Articles: sars-cov-2.
-
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the reason of the global health crisis. Since the first case of diagnosed COVID-19 pneumonia was reported in Wuhan, Hubei Province, China, in December 2019, the infection has spread rapidly to all over the world. The knowledge gained from previous human coronavirus infection outbreaks suggests that pregnant women and their foetuses represent a high-risk population during infectious disease epidemics. ⋯ The constantly increasing number of publications regarding the course of COVID-19 infection in pregnant women has been published, however, the available data remains limited and many questions remain unanswered. The aim of this review was to summarize the literature data and adjusted to current recommendations regarding pregnancy care, delivery and postpartum period. An extremely important issue is the need to register all the cases of COVID-19 affected women and the course of these pregnancies to local, regional, or international registries, which will be helpful to answer many clinical and scientific questions and to create guidelines ensuring an adequate level of care for women affected by COVID-19 infection during pregnancy, delivery and during postpartum period, as well as their newborns.
-
Frontiers in immunology · Jan 2020
Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach.
The rapidly spreading, highly contagious and pathogenic SARS-coronavirus 2 (SARS-CoV-2) associated Coronavirus Disease 2019 (COVID-19) has been declared as a pandemic by the World Health Organization (WHO). The novel 2019 SARS-CoV-2 enters the host cell by binding of the viral surface spike glycoprotein (S-protein) to cellular angiotensin converting enzyme 2 (ACE2) receptor. The virus specific molecular interaction with the host cell represents a promising therapeutic target for identifying SARS-CoV-2 antiviral drugs. ⋯ These identified molecules may effectively assist in controlling the rapid spread of SARS-CoV-2 by not only potentially inhibiting the virus at entry step but are also hypothesized to act as anti-inflammatory agents, which could impart relief in lung inflammation. Timely identification and determination of an effective drug to combat and tranquilize the COVID-19 global crisis is the utmost need of hour. Further, prompt in vivo testing to validate the anti-SARS-CoV-2 inhibition efficiency by these molecules could save lives is justified.
-
Frontiers in microbiology · Jan 2020
ReviewTherapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review.
The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. However, approved antiviral agents for the treatment of patients with COVID-19 remain unavailable. ⋯ A combination of repurposed drugs can improve the efficacy of treatment, and structure-based drug design can be employed to specifically target SARS-CoV-2. This review discusses therapeutic strategies using promising antiviral agents against SARS-CoV-2. In addition, structural characterization of potentially therapeutic viral or host cellular targets associated with COVID-19 have been discussed to refine structure-based drug design strategies.
-
Clin. Appl. Thromb. Hemost. · Jan 2020
ReviewPathogenesis and Treatment Strategies of COVID-19-Related Hypercoagulant and Thrombotic Complications.
The new type of pneumonia caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is endemic worldwide, and many countries cannot be spared, becoming a global health concern. The disease was named COVID-19 by the World Health Organization (WHO) on January 30, 2020, when the WHO declared the Chinese outbreak of COVID-19 to be a public health emergency of international concern. The clinical features of COVID-19 include dry cough, fever, diarrhea, vomiting, and myalgia. ⋯ The autopsy pathology of COVID-19 confirmed the above. This article briefly summarizes the mechanism of hypercoagulability and thrombotic complications of severe COVID-19 and proposes that blood hypercoagulability and intravascular microthrombosis are the development nodes of severe COVID-19. Therefore, anticoagulation and anti-inflammatory therapy can be used as important treatment strategies for severe COVID-19.
-
Anal Cell Pathol (Amst) · Jan 2020
ReviewTherapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of SARS-CoV-2-Induced Acute Respiratory Distress Syndrome.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent responsible for the development of a new coronavirus disease (COVID-19), is a highly transmittable virus which, in just ten months, infected more than 40 million people in 214 countries worldwide. After inhalation, aerosols containing SARS-CoV-2 penetrate to the depths of the lungs and cause severe pneumonia, alveolar injury, and life-threatening acute respiratory distress syndrome (ARDS). ⋯ Due to their potent immuno- and angiomodulatory characteristics, mesenchymal stem cells (MSCs) may increase oxygen supply in the lungs and may efficiently alleviate ongoing lung inflammation, including SARS-CoV-2-induced ARDS. In this review article, we described molecular mechanisms that are responsible for MSC-based modulation of immune cells which play a pathogenic role in the development of SARS-CoV-2-induced ARDS and we provided a brief outline of already conducted and ongoing clinical studies that increase our understanding about the therapeutic potential of MSCs and their secretome in the therapy of COVID-19-related ARDS.