Articles: pain-clinics.
-
Repetitive ischemia with reperfusion (I/R) injury is a common cause of myalgia. Ischemia with reperfusion injuries occur in many conditions that differentially affect males and females including complex regional pain syndrome and fibromyalgia. Our preclinical studies have indicated that primary afferent sensitization and behavioral hypersensitivity caused by I/R injury may be due to sex-specific gene expression in the dorsal root ganglia (DRG) and distinct upregulation of growth factors and cytokines in the affected muscles. ⋯ AUF1 knockdown was able to specifically inhibit repeated I/R-induced gene expression in females potentially downstream of prolactin receptor signaling. Data suggest RNA-binding proteins such as pAUF1 may underlie the sex-specific effects on DRG gene expression that modulates behavioral hypersensitivity after repeated I/R injury through prolactin signaling. This study may aid in finding distinct receptor differences related to the evolution of acute to chronic ischemic muscle pain development between sexes.
-
Voltage-gated sodium (Nav) channels present untapped therapeutic value for better and safer pain medications. The Nav1.8 channel isoform is of particular interest because of its location on peripheral pain fibers and demonstrated role in rodent preclinical pain and neurophysiological assays. To-date, no inhibitors of this channel have been approved as drugs for treating painful conditions in human, possibly because of challenges in developing a sufficiently selective drug-like molecule with necessary potency not only in human but also across preclinical species critical to the preclinical development path of drug discovery. ⋯ In this report, we have leveraged numerous physiological end points in nonhuman primates to evaluate the analgesic and pharmacodynamic activity of a novel, potent, and selective Nav1.8 inhibitor compound, MSD199. These pharmacodynamic biomarkers provide important confirmation of the in vivo impact of Nav1.8 inhibition on peripheral pain fibers in primates and have high translational potential to the clinical setting. These findings may thus greatly improve success of translational drug discovery efforts toward better and safer pain medications, as well as the understanding of primate biology of Nav1.8 inhibition broadly.
-
Treating bone cancer pain (BCP) continues to be a clinical challenge, and the underlying mechanisms of BCP remain elusive. This study reports that Wnt5a/Ryk signaling in the dorsal root ganglion neurons is critical to the development of BCP. Tibia bone cavity tumor cell implantation produces spontaneous and evoked behaviorally expressed pain as well as ectopic sprouting and activity of Wnt5a/Ryk signaling in the neural soma and peripheral terminals and the tumor-affected bone tissues. ⋯ Blocking Ryk receptor activation suppresses Wnt5a-induced mechanical allodynia and thermal hyperalgesia. Wnt5a facilitation of transient receptors potential vanilloid type-1 sensitization is blocked by inhibiting c-Jun N-terminal kinase activation. These findings indicate a critical peripheral mechanism of Wnt5a/Ryk signaling underlying the pathogenesis of BCP and suggest that targeting Wnt5a/Ryk in the primary sensory neurons and the tumor-invasive area may be an effective approach for the prevention and treatment of BCP.
-
The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of Gi/o-coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel. ⋯ Consistent with this mechanism of action, we confirmed that TRPA1-mediated colonic contractions evoked by SP release were abolished by CS pretreatment in a GPR35-dependent manner. Our data demonstrate that GPR35 agonists prevent the activation and sensitisation of colonic nociceptors through the inhibition of TRPA1-mediated SP release. These findings highlight the potential of GPR35 agonists to deliver nonopioid analgesia for the treatment of abdominal pain.
-
Curr Opin Anaesthesiol · Oct 2024
ReviewFascial plane blocks: from microanatomy to clinical applications.
In the last 20 years, advancements in the understanding of fasciae have significantly transformed anaesthesia and surgery. Fascial plane blocks (FPBs) have gained popularity due to their validated safety profile and relative ease. They are used in various clinical settings for surgical and nonsurgical indications. Growing evidence suggests a link between the microscopic anatomy of fasciae and their mechanism of action. As a result, knowledge of these aspects is urgently needed to better optimise pain management. The purpose of this review is to summarise the different microscopic aspects of deep/muscular fascia to expand our understanding in the performance of FPBs. ⋯ Physicians must be aware of the role of fascial microscopic anatomy and better understand their properties to perform FPBs in a conscious manner and enhance pain management.