Articles: cations.
-
Hemorrhagic shock (HS) is a life-threatening condition with high mortality rates despite current treatments. This study investigated whether targeted temperature management (TTM) could improve outcomes by modulating inflammation and protecting organs following HS. Using a rat model of HS, TTM was applied at 33°C and 36°C after fluid resuscitation. ⋯ Cytokine array analysis confirmed reduced levels of proinflammatory cytokines with TTM at 36°C. These results collectively highlight the potential of TTM at 36°C as a therapeutic approach to improve outcomes in HS. By addressing multiple aspects of injury and inflammation, including modulation of macrophage responses and cytokine profiles, TTM at 36°C offers promising implications for critical care management after HS, potentially reducing mortality and improving patient recovery.
-
As a mechanosensitive cation channel and key regulator of vascular barrier function, endothelial transient receptor potential vanilloid type 4 (TRPV4) contributes critically to ventilator-induced lung injury and edema formation. Ca2+ influx via TRPV4 can activate Ca2+-activated potassium (KCa) channels, categorized into small (SK1-3), intermediate (IK1), and big (BK) KCa, which may in turn amplify Ca2+ influx by increasing the electrochemical Ca2+ gradient and thus promote lung injury. The authors therefore hypothesized that endothelial KCa channels may contribute to the progression of TRPV4-mediated ventilator-induced lung injury. ⋯ KCa channels, specifically IK1, act as amplifiers of TRPV4-mediated Ca2+ influx and establish a detrimental feedback that promotes barrier failure and drives the progression of ventilator-induced lung injury.