Articles: respiratory-distress-syndrome.
-
Journal of critical care · Feb 2025
LetterElectrical impedance tomography to set high pressure in time-controlled adaptive ventilation.
TCAV (Time controlled adaptive ventilation), a combination of settings applied to the APRV (airway pressure release ventilation) mode, provides personalized ventilation tailored to the lung condition in ARDS (acute respiratory distress syndrome). The objective was to evaluate whether electrical impedance tomography (EIT) could serve as a tool for guiding Phigh level in TCAV for ARDS patients. ⋯ EIT enabled detection of regional ventilation distribution on TCAV during a decremental Phigh trial and thus enabled the determination of a best EIT-derived-Phigh through an individualized approach, achieving best compromise between overdistension and collapse. The observed overdistention variability highlights the necessity of Phigh level personalization on TCAV.
-
Curr Opin Crit Care · Feb 2025
ReviewManagement of sedation during weaning from mechanical ventilation.
Critically ill patients frequently require mechanical ventilation and often receive sedation to control pain, reduce anxiety, and facilitate patient-ventilator interactions. Weaning from mechanical ventilation is intertwined with sedation management. In this review, we analyze the current evidence for sedation management during ventilatory weaning, including level of sedation, timing of sedation weaning, analgesic and sedative choices, and sedation management in acute respiratory distress syndrome (ARDS). ⋯ Light or no sedation strategies that prioritize analgesia prior to sedatives along with paired SATs/SBTs promote ventilator liberation. Dexmedetomidine may have a role in weaning for agitated patients. Further investigation is needed into optimal sedation management for patients with ARDS.
-
Journal of critical care · Feb 2025
ReviewUnderstanding ventilator-induced lung injury: The role of mechanical power.
Mechanical ventilation stands as a life-saving intervention in the management of respiratory failure. However, it carries the risk of ventilator-induced lung injury. Despite the adoption of lung-protective ventilation strategies, including lower tidal volumes and pressure limitations, mortality rates remain high, leaving room for innovative approaches. ⋯ To overcome the constraints of measuring static respiratory parameters, dynamic mechanical power is proposed for all patients, regardless of their ventilation mode. However, establishing a causal relationship is crucial for its potential implementation, and requires further research. The objective of this review is to explore the role of mechanical power in ventilator-induced lung injury, its association with patient outcomes, and the challenges and potential benefits of implementing a ventilation strategy based on mechanical power.
-
APRV has been used for ARDS in the past. Little is known about the risk of ventilator- induced lung- injury (VILI) in APRV vs. BIPAP in the management of in COVID19-associated ARDS (CARDS). This study aimed to compare transpulmonary pressures (TPP) in APRV vs. BIPAP in CARDS in regard to lung protective ventilator settings. ⋯ Despite higher tidal- volumes / airway-pressures in APRV vs. BIPAP, TPPendinspiratory was not increased. However, in APRV median TPPendexpiratory was negative indicating an elevated risk of occult atelectasis in APRV- mode in CARDS. Therefore, TPP- monitoring could be a useful tool for monitoring a safe application of APRV- mode in CARDS.