Articles: respiratory-distress-syndrome.
-
Randomized Controlled Trial Multicenter Study
Early non-invasive ventilation and high-flow nasal oxygen therapy for preventing endotracheal intubation in hypoxemic blunt chest trauma patients: the OptiTHO randomized trial.
The benefit-risk ratio of prophylactic non-invasive ventilation (NIV) and high-flow nasal oxygen therapy (HFNC-O2) during the early stage of blunt chest trauma remains controversial because of limited data. The main objective of this study was to compare the rate of endotracheal intubation between two NIV strategies in high-risk blunt chest trauma patients. ⋯ NCT03943914, Registered 7 May 2019.
-
Acute respiratory distress syndrome (ARDS) in miliary tuberculosis (TB) remains rare, especially in pregnant women. The role of blood purification is potential in managing ARDS due to miliary TB. ⋯ This case underscores the potential role of blood purification in ARDS due to miliary TB in pregnancy.
-
Multicenter Study Observational Study
Utilization of mechanical power and associations with clinical outcomes in brain injured patients: a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial.
There is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes. ⋯ Exposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation.
-
At the bedside, assessing the risk of ventilator-induced lung injury (VILI) requires parameters readily measured by the clinician. For this purpose, driving pressure (DP) and end-inspiratory static 'plateau' pressure ([Formula: see text]) of the tidal cycle are unquestionably useful but lack key information relating to associated volume changes and cumulative strain. 'Mechanical power', a clinical term which incorporates all dissipated ('non-elastic') and conserved ('elastic') energy components of inflation, has drawn considerable interest as a comprehensive 'umbrella' variable that accounts for the influence of ventilating frequency per minute as well as the energy cost per tidal cycle. ⋯ Here we describe how-if only in concept-the bedside clinician might gauge the theoretical hazard of delivered energy using easily observed static circuit pressures ([Formula: see text] and positive end expiratory pressure) and an estimate of the maximally tolerated (threshold) non-dissipated ('elastic') airway pressure that reflects the pressure component applied to the alveolar tissues. Because its core inputs are already in use and familiar in daily practice, the simplified mathematical model we propose here for damaging energy and power may promote deeper comprehension of the key factors in play to improve lung protective ventilation.
-
Heterogeneity is an inherent nature of ARDS. Recruitment-to-inflation ratio has been developed to identify the patients who has lung recruitablity. This technique might be useful to identify the patients that match specific interventions, such as higher positive end-expiratory pressure (PEEP) or prone position or both. We aimed to evaluate the physiological effects of PEEP and body position on lung mechanics and regional lung inflation in COVID-19-associated ARDS and to propose the optimal ventilatory strategy based on recruitment-to-inflation ratio. ⋯ Recruitment-to-inflation ratio may be useful to personalize PEEP in COVID-19-associated ARDS. Higher PEEP in prone position and lower PEEP in prone position decreased the amount of dependent silent spaces (suggesting lung collapse) without increasing the amount of non-dependent silent spaces (suggesting overinflation) in high recruiter and in low recruiter, respectively.