Articles: respiratory-distress-syndrome.
-
Multicenter Study Observational Study
Correlation of SpO2/FiO2 and PaO2/FiO2 in patients with symptomatic COVID-19: An observational, retrospective study.
Some patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experience acute hypoxemic respiratory failure progressing toward atypical acute respiratory distress syndrome (ARDS). The aim of the study is to evaluate whether a correlation between ratio of peripheral saturation of oxygen (SpO2) and fraction of inspired oxygen (S/F) and ratio of arterial partial pressure of oxygen and fraction of inspired oxygen (P/F) exists in COVID-19-related ARDS as already known in classical ARDS. In this multicenter, retrospective, observational study, consecutive, adult (≥ 18 years) patients with symptomatic coronavirus disease 2019 (COVID-19) admitted to different COVID-19 divisions in Italy between March and December 2020 were included. ⋯ S/F was also tested against P/F values ≤ 200 and ≤ 100 mmHg (suggestive for moderate and severe ARDS, respectively), the latter showing great accuracy for S/F ≤ 178%. S/F was accurate in predicting ARDS for SpO2 ≥ 92%. In conclusion, our findings support the routine use of S/F as a reliable surrogate of P/F in patients with COVID-19-related ARDS.
-
J. Cardiothorac. Vasc. Anesth. · Sep 2022
Effect of Initial Anticoagulation Targets on Bleeding and Thrombotic Complications for Patients With Acute Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation.
To evaluate the effect of anticoagulation targets and intensity on bleeding events, thrombotic events, and transfusion requirements in patients with acute respiratory distress syndrome (ARDS) receiving venovenous extracorporeal membrane oxygenation (ECMO) and continuous-infusion heparin. ⋯ Anticoagulation protocols standardizing aPTT goals to <50 or 40-to-50 seconds may be a reasonable strategy for patients receiving venovenous ECMO for ARDS. More restrictive hemoglobin transfusion thresholds, in combination with lower aPTT targets, may be associated with a reduction in transfusion requirements.
-
The mechanisms underlying oxygenation improvement after prone positioning in COVID-19 acute respiratory distress syndrome have not been fully elucidated yet. The authors hypothesized that the oxygenation increase with prone positioning is secondary to the improvement of ventilation-perfusion matching. ⋯ In COVID-19 acute respiratory distress syndrome patients, prone positioning overall produced an early increase in ventilation-perfusion matching and dorsal ventilation. These effects were, however, heterogeneous among patients.