Knowledge
-
Tapentadol (Palexia™, Nucynta™) is a synthetic opioid agonist and noradrenaline-reuptake inhibitor. Similar to and based upon tramadol, although with much weaker inhibition (by design) of serotonin reuptake.
A. Physiochemistry
- Synthetic analgesic of 'amino-cyclo-hexanol' group.
- Unlike tramadol, prepared as only the (R,R) stereoisomer (weakest opioid activity).
- Oral: 50, 75 & 100 mg immediate release, and 50,100,150 & 200 mg extended release preparations.
- No parenteral preparation is approved for use.
B. Pharmacokinetics
- Dose: 50-200 mg bd/qid for immediate release preparations, 50-200mg bd for extended release.
- approximately double potency of tramadol, similar to oxycodone and between tramadol and morphine.
- Absorption - po (only 32% biov)
- increasing doses have a non-linear effect on increasing peak plasma concentration, thus higher doses result in disproportionately higher Cmax.
- Distribution - ~8 L/kg (higher than tramadol).
- Protein binding - 20% (low!)
- Onset 30 min; Offset 4-6 h
- Metabolism - t½ 4h
- hepatic conjugation with glucuronic acid → glucuronides is main pathway (tapentadol-O-glucuronide); p450 metabolism to N-desmethyl tapentadol and hydroxyl tapentadol.
- No known active metabolites
- 99% excreted in urine, 1% in faecies.
- Clearance - 22 mL/kg/min
C. Pharmacodynamics
- Mech - weak mu agonists (30% of action / 18x less affinity than morphine) ; inhibits NAd reuptake (through indirect activation of post-synaptic alpha-2 adrenoreceptors), activating descending NAd (70%) modulating pain pathways.
- CNS - analgesia, good for neuropathic pain, low(er) incidence of tolerance & dependence, lowers seizure threshold, dizziness, sweating, ⇡ ICP.
- CVS - few CVS effects. Some tachycardia and flushing.
- Resp - little respiratory depression.
- Renal - possible caution in renal failure, although no active metabolites even if 99% renal excreted.
- GIT - Nausea & vomiting (less than tramadol), minimal constipation, more biliary spasm than tramadol.
- SEs - interacts with MAOI (adrenergic storm), SSRIs (serotonin syndrome).
- Although thought to have less abuse potential than other common opioids, it is still classed as a Schedule 2 drug in the US, Schedule 1 in Canada, Class A controlled drug in the UK and S8 in Australia.
- Safety of tapentadol in pregnant, lactating women, and pediatric patients is not yet established.
-
Pholcodine is an opioid anti-tussive (ie. cough suppressant). It is a common component of over-the-counter cough medications. However it has a special significance to anesthesiologists in relation to anaphylaxis risk, particularly related to neuromuscular agents.
Florvaag et al's 2009 review covers this issue very comprehensively. Earlier 2006 research from Florvaag et al attempting to explain some of the regional variability in anaphylaxis rates showed that exposure to pholcodine causes an 60-105 times increase in IgE levels!
Countries where pholcodine use is common (eg Norway) seem to have experienced higher levels of anaphylaxis to neuromuscular blocking agents than countries where it is not common (eg Sweden). In fact, in Norway rocuronium anaphylaxis was such a problem that its use was restricted to modified rapid sequence inductions. A pholcodine containing cough syrup has been withdrawn from the market in Norway because of this (and levels of sensitisation seem to be dropping although it is still too early to draw conclusions). It will be interesting to see if there are other compounds that have a similar effect on IgE sensitisation and whether other countries will consider withdrawing pholcodine products.
In addition to the two articles from Florvaag that specifically look at Pholcodine and it's effects, there is also an interesting review looking at recent insights into anaphylaxis in the anaesthetic setting from Dewachter and team.
Also interesting is Lee et al.'s 2016 case report describing two patients with pholcodine anaphylaxis who then when tested also showed NMBD sensitivity.
Helen Crilly & Michael Rose's 2014 review in Australian Prescriber Anaphylaxis and anaesthesia – can treating a cough kill? is another great summary of the issue.
summary
...and 2 more notes
-
-
Suxamethonium chloride (suxamethonium, succinylcholine or sux) is a depolarising muscle relaxant that produces rapid-onset, short-duration, deep muscle relaxation. First identified in 1906 and used medically in 1951, it is one of the oldest anaesthesia drugs still widely used. Due to its unique properties and low cost, it remains on the World Health Organisation's List of Essential Medicines
A. Physiochemistry
- (CH3)3-N-CH2CH2-OCO-CH2CH2-OCO-CH2CH2-N-(CH3)3
- pH 3.5
- Shelf life 3 years at 4°C, though only 'months' at 20°C.
B. Pharmacokinetics
- Dose - ED95 0.5 mg/kg, IV 1.5 mg/kg, IM 2.5-4 mg/kg.
- Absorption - IM, IV.
- Distribution - >0.2 L/kg; crosses placenta slightly but little effect on foetus.
- Protein binding ?
- Onset 30s IV, 2-3 min IM; Offset 3-5 min.
- Metabolism - PChE to succinylmonocholine (5% activity) & choline -> succinic acid & choline.
- tß½ 5 minutes
C. Pharmacodynamics
- Mechanism - binds to alpha subunit of nicotinic ACh receptor, producing persistent depolarisation (phase 1 & phase 2 blocks).
- CNS - ⇡ intra-ocular pressure (4-8 mmHg rise), ⇡ intra-celebral pressure (to 30 mmHg at 2-4 min).
- CVS - arrhythmias (both bradycardia & tachycardia possible), ⇡ systolic blood pressure, (both negative inotropic and chronotropic effects).
- Resp - 'sux apnoea' pharmacogenetic diversity (94% normal, 3.8% heterozyg (10 min duration of effect), <1% homozog (1-2h duration))
- Renal - hyperkalaemia due to K+ release from muscle; beware in neuromuscular conditions, denervation, and extensive burns.
- GIT - ⇡ intragastric pressure, ⇡ secretions, salivation.
- SEs - anaphylaxis, malignant hyperthermia, sux apnoea, muscle pains, masseter spasm.
-