-
- Daniel M Sciubba, Jeff Ehresman, Zach Pennington, Daniel Lubelski, James Feghali, Ali Bydon, Dean Chou, Benjamin D Elder, Aladine A Elsamadicy, C Rory Goodwin, Matthew L Goodwin, James Harrop, Eric O Klineberg, Ilya Laufer, LoSheng-Fu LSLDepartment of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Brian J Neuman, Peter G Passias, Themistocles Protopsaltis, John H Shin, Nicholas Theodore, Timothy F Witham, and Edward C Benzel.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. Electronic address: dsciubb1@jhmi.edu.
- World Neurosurg. 2020 Aug 1; 140: e373e380e373-e380.
BackgroundAs of May 4, 2020, the coronavirus disease 2019 (COVID-19) pandemic has affected >3.5 million people and touched every inhabited continent. Accordingly, it has stressed health systems worldwide, leading to the cancellation of elective surgical cases and discussions regarding health care resource rationing. It is expected that rationing of surgical resources will continue even after the pandemic peak and may recur with future pandemics, creating a need for a means of triaging patients for emergent and elective spine surgery.MethodsUsing a modified Delphi technique, a cohort of 16 fellowship-trained spine surgeons from 10 academic medical centers constructed a scoring system for the triage and prioritization of emergent and elective spine surgeries. Three separate rounds of videoconferencing and written correspondence were used to reach a final scoring system. Sixteen test cases were used to optimize the scoring system so that it could categorize cases as requiring emergent, urgent, high-priority elective, or low-priority elective scheduling.ResultsThe devised scoring system included 8 independent components: neurologic status, underlying spine stability, presentation of a high-risk postoperative complication, patient medical comorbidities, expected hospital course, expected discharge disposition, facility resource limitations, and local disease burden. The resultant calculator was deployed as a freely available Web-based calculator (https://jhuspine3.shinyapps.io/SpineUrgencyCalculator/).ConclusionsWe present the first quantitative urgency scoring system for the triage and prioritizing of spine surgery cases in resource-limited settings. We believe that our scoring system, although not all encompassing, has potential value as a guide for triaging spine surgical cases during the COVID pandemic and post-COVID period.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.