• World Neurosurg · Sep 2020

    Biomechanical comparison of unilateral and bilateral pedicle screws fixation for oblique lumbar inter-body fusion surgery - a finite element analysis.

    • Guofang Fang, Yunzhi Lin, Jiachang Wu, Wengang Cui, Shihao Zhang, Lili Guo, Hongxun Sang, and Wenghua Huang.
    • Department of Orthopaedics, Shenzhen Hospital of Southern Medical University, Guangzhou, China.
    • World Neurosurg. 2020 Sep 1; 141: e204-e212.

    BackgroundThe most common complication of oblique lumbar interbody fusion (OLIF) is endplate fracture/subsidence. The mechanics of endplate fracture in OLIF surgery are still unclear. The aim of the present study was to evaluate the biomechanical stability in patients undergoing OLIF surgery with stand-alone (SA) and bilateral pedicle screw fixation (BPSF) methods.MethodsA finite element model of the L1-L5 spinal unit was established and validated. Using the validated model technique, L4-L5 functional surgical models corresponding to the SA and BPSF methods were created. Simulations using the models were performed to investigate OLIF surgery. A 500-N compression force was applied to the superior surface of the model to represent the upper body weight, and a 7.5-Nm moment was applied to simulate the 6 movement directions of the lumbar spinal model: flexion and extension, right and left lateral bending, and right and left axial rotation. Finite element models were developed to compare the biomechanics of the SA and BPSF groups.ResultsCompared with the range of motion of the intact lumbar model, that of the SA model was decreased by 79.6% in flexion, 54.5% in extension, 57.2% in lateral bending, and 50.0% in axial rotation. The BPSF model was decreased by 86.7% in flexion, 77.3% in extension, 76.2% in lateral bending, and 75.0% in axial rotation. Compared with the BPSF model, the maximum stresses of the L4 inferior endplate and L5 superior endplate were greatly increased in the SA model. The L4 inferior endplate stress was increased to 49.7 MPa in extension, and the L5 superior endplate stress was increased to 47.7 MPa in flexion, close to the yield stress of the lamellar bone (60 MPa).ConclusionsOLIF surgery with BPSF could reduce the maximum stresses on the endplate, which might reduce the incidence of cage subsidence. OLIF surgery with the SA method produced more stress compared with BPSF, especially in extension and flexion, which might be a potential risk factor for cage subsidence.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.