• J Biomed Inform · Jun 2019

    A distant supervision based approach to medical persona classification.

    • Nikhil Pattisapu, Manish Gupta, Ponnurangam Kumaraguru, and Vasudeva Varma.
    • Information Retrieval and Extraction Lab, Kohli Center for Intelligent Systems, International Institute of Information Technology Hyderabad, 500032, India. Electronic address: nikhil.pattisapu@research.iiit.ac.in.
    • J Biomed Inform. 2019 Jun 1; 94: 103205.

    AbstractIdentifying medical persona from a social media post is critical for drug marketing, pharmacovigilance and patient recruitment. Medical persona classification aims to computationally model the medical persona associated with a social media post. We present a novel deep learning model for this task which consists of two parts: Convolutional Neural Networks (CNNs), which extract highly relevant features from the sentences of a social media post and average pooling, which aggregates the sentence embeddings to obtain task-specific document embedding. We compare our approach against standard baselines, such as Term Frequency - Inverse Document Frequency (TF-IDF), averaged word embedding based methods and popular neural architectures, such as CNN-Long Short Term Memory (CNN-LSTM) and Hierarchical Attention Networks (HANs). Our model achieves an improvement of 19.7% for classification accuracy and 20.1% for micro F1 measure over the current state-of-the-art. We eliminate the need for manual labeling by employing a distant supervision based method to obtain labeled examples for training the models. We thoroughly analyze our model to discover cues that are indicative of a particular persona. Particularly, we use first derivative saliency to identify the salient words in a particular social media post.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.