• Med Biol Eng Comput · Jun 2019

    Comparative Study

    Comparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring.

    • Riccardo Pernice, Michal Javorka, Jana Krohova, Barbora Czippelova, Zuzana Turianikova, Alessandro Busacca, Luca Faes, and Member, IEEE.
    • Department of Engineering, University of Palermo, Viale delle Scienze, Building 9, 90128, Palermo, Italy. riccardo.pernice@unipa.it.
    • Med Biol Eng Comput. 2019 Jun 1; 57 (6): 1247-1263.

    AbstractHeart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. In this work, we carry out a thorough analysis and comparison of short-term variability indexes computed from HRV time series obtained from the ECG and from PRV time series obtained from continuous blood pressure (CBP) signals, in order to evaluate the reliability of using CBP-based recordings in place of standard ECG tracks. The analysis has been carried out on short time series (300 beats) of HRV and PRV in 76 subjects studied in different conditions: resting in the supine position, postural stress during 45° head-up tilt, and mental stress during computation of arithmetic test. Nine different indexes have been taken into account, computed in the time domain (mean, variance, root mean square of the successive differences), frequency domain (low-to-high frequency power ratio LF/HF, HF spectral power, and central frequency), and information domain (entropy, conditional entropy, self entropy). Thorough validation has been performed using comparison of the HRV and PRV distributions, robust linear regression, and Bland-Altman plots. Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.