Medical & biological engineering & computing
-
The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. ⋯ Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.
-
Med Biol Eng Comput · Aug 2020
The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.
Follower loads are used to simulate physiological compressive loads on the human spine. These compressive loads represent the load-carrying capacity of the human cervical spine and play an important role in maintaining its stability. However, under different follower loads the biomechanical response of the cervical spine is unknown. ⋯ Using this FE model of the cervical spine, we evaluated the effect of different follower loads (0 N, 50 N, 100 N, 150 N) on range of motion, facet joint force, and IDP in the cervical spine. In this study, the follower load was applied to the finite element model by connector elements. At the same time, a moment of 1 Nm was applied in the three anatomical planes to simulate different postures.
-
Med Biol Eng Comput · Apr 2020
A deep convolutional neural network architecture for interstitial lung disease pattern classification.
Interstitial lung disease (ILD) refers to a group of various abnormal inflammations of lung tissues and early diagnosis of these disease patterns is crucial for the treatment. Yet it is difficult to make an accurate diagnosis due to the similarity among the clinical manifestations of these diseases. In order to assist the radiologists, computer-aided diagnosis systems have been developed. ⋯ The experimental results show that our proposed CNN architecture achieves desirable performance and outperforms most of the state-of-the-art ones. The comparative analysis demonstrates the promising feasibility and advantages of the proposed two-stage transfer learning strategy as well as the potential of the knowledge learning from lung CT data. Graphical Abstract The framework of the proposed two-stage transfer learning method.
-
Med Biol Eng Comput · Feb 2020
How to ventilate preterm infants with lung compliance close to circuit compliance: real-time simulations on an infant hybrid respiratory simulator.
Circuit compliance close to lung compliance can create serious problems in effective and safe mechanical ventilation of preterm infants. We considered what ventilation technique is the most beneficial in this case. A hybrid (numerical-physical) simulator of infant respiratory system mechanics, the Bennett Ventilator and NICO apparatus were used to simulate pressure-controlled ventilation (PC) and volume-controlled ventilation with constant flow (VCVCF) and descending flow (VCVDF), under permissive hypercapnia (PHC) (6 ml kg-1) and normocapnia (SV) (8 ml kg-1) conditions. ⋯ The most beneficial ventilation technique appeared to be PC ventilation with the PHC strategy, with lower RR (36 min-1). Graphical abstract The effectiveness of an infant ventilation depending on circuit compliance to lung compliance ratio (Cv CL-1) and inspiration time (Ti). VV, VT, tidal volume set on the ventilator and delivered to patient, respectively.
-
Med Biol Eng Comput · Jun 2019
Comparative StudyComparison of short-term heart rate variability indexes evaluated through electrocardiographic and continuous blood pressure monitoring.
Heart rate variability (HRV) analysis represents an important tool for the characterization of complex cardiovascular control. HRV indexes are usually calculated from electrocardiographic (ECG) recordings after measuring the time duration between consecutive R peaks, and this is considered the gold standard. An alternative method consists of assessing the pulse rate variability (PRV) from signals acquired through photoplethysmography, a technique also employed for the continuous noninvasive monitoring of blood pressure. ⋯ Results demonstrate the feasibility of extracting HRV indexes from CBP-based data, showing an overall relatively good agreement of time-, frequency-, and information-domain measures. The agreement decreased during postural and mental arithmetic stress, especially with regard to band-power ratio, conditional, and self-entropy. This finding suggests to use caution in adopting PRV as a surrogate of HRV during stress conditions.