• AJR Am J Roentgenol · Mar 2020

    Multicenter Study

    Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.

    • Ramandeep Singh, Subba R Digumarthy, Victorine V Muse, Avinash R Kambadakone, Michael A Blake, Azadeh Tabari, Yiemeng Hoi, Naruomi Akino, Erin Angel, Rachna Madan, and Mannudeep K Kalra.
    • Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Ste 236, Boston, MA 02114.
    • AJR Am J Roentgenol. 2020 Mar 1; 214 (3): 566-573.

    AbstractOBJECTIVE. The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. MATERIALS AND METHODS. Our prospective multiinstitutional study included 59 adult patients (33 women, 26 men; mean age ± SD, 65 ± 12 years old; mean body mass index [weight in kilograms divided by the square of height in meters] = 27 ± 5) who underwent routine chest (n = 22; 16 women, six men) and abdominopelvic (n = 37; 17 women, 20 men) CT on a 640-MDCT scanner (Aquilion ONE, Canon Medical Systems). All patients gave written informed consent for the acquisition of low-dose (LD) CT (LDCT) after a clinically indicated standard-dose (SD) CT (SDCT). The SDCT series (120 kVp, 164-644 mA) were reconstructed with interactive reconstruction (IR) (adaptive iterative dose reduction [AIDR] 3D, Canon Medical Systems), and the LDCT (100 kVp, 120 kVp; 30-50 mA) were reconstructed with filtered back-projection (FBP), IR (AIDR 3D and forward-projected model-based iterative reconstruction solution [FIRST], Canon Medical Systems), and deep learning reconstruction (DLR) (Advanced Intelligent Clear-IQ Engine [AiCE], Canon Medical Systems). Four subspecialty-trained radiologists first read all LD image sets and then compared them side-by-side with SD AIDR 3D images in an independent, randomized, and blinded fashion. Subspecialty radiologists assessed image quality of LDCT images on a 3-point scale (1 = unacceptable, 2 = suboptimal, 3 = optimal). Descriptive statistics were obtained, and the Wilcoxon sign rank test was performed. RESULTS. Mean volume CT dose index and dose-length product for LDCT (2.1 ± 0.8 mGy, 49 ± 13mGy·cm) were lower than those for SDCT (13 ± 4.4 mGy, 567 ± 249 mGy·cm) (p < 0.0001). All 31 clinically significant abdominal lesions were seen on SD AIDR 3D and LD DLR images. Twenty-five, 18, and seven lesions were detected on LD AIDR 3D, LD FIRST, and LD FBP images, respectively. All 39 pulmonary nodules detected on SD AIDR 3D images were also noted on LD DLR images. LD DLR images were deemed acceptable for interpretation in 97% (35/37) of abdominal and 95-100% (21-22/22) of chest LDCT studies (p = 0.2-0.99). The LD FIRST, LD AIDR 3D, and LD FBP images had inferior image quality compared with SD AIDR 3D images (p < 0.0001). CONCLUSION. At submillisievert chest and abdominopelvic CT doses, DLR enables image quality and lesion detection superior to commercial IR and FBP images.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.