• Croatian medical journal · Aug 2014

    Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure? (secondary publication).

    • Marin Bulat and Marijan Klarica.
    • Croat. Med. J. 2014 Aug 28; 55 (4): 291-8.

    AimRelationships between hydrostatic and oncotic (colloid osmotic) pressures in both capillaries and interstitium are used to explain fluid filtration and reabsorption across microvascular walls. These pressures are incorporated in the Starling oncotic hypothesis of capillaries which fails, however, to explain fluid homeostasis when hydrostatic capillary pressure is high (in feet during orthostasis) and low (in lungs), or when oncotic plasma pressure is significantly decreased in experiments and some clinical states such as genetic analbuminaemia.MethodsTo explain fluid homeostasis we propose osmotic counterpressure hypothesis of capillaries which claims: 1) during water filtration across microvascular wall in arterial capillary, the plasma osmolytes are sieved (retained) so that plasma osmotic counterpressure is generated, 2) this osmotic counterpressure rises along the length of capillary and when it reaches capillary hydrostatic pressure the water filtration is halted, and 3) in venous capillaries and postcapillary venules where hydrostatic pressure is low, the osmotic counterpressure is instrumental in water reabsorption from interstitium what leads to dissipation of osmotic counterpressure. According to modified van’t Hoff’s equation the generation of osmotic counterpressure depends on plasma concentration of osmolytes and their restricted passage (reflection coefficient) across microvascular wall in comparison to water.ResultsPlasma NaCl makes 83% of plasma osmolarity and shows restricted passage across the walls of cerebral and peripheral continuous capillaries, so that Na and Cl are the most important osmolytes for generation of osmotic counterpressure. Our calculation indicates that at various rates of water filtration the osmotic counterpressure of NaCl acts as negative feedback control: higher hydrostatic pressure and water filtration rate create higher osmotic counterpressure which opposes filtration and leads to higher water reabsorption rate. Furthermore, our analysis indicates that fluid volume changes in arterial capillaries are proportionally 100 times larger than in interstial fluid.ConclusionThe osmotic counterpressure hypothesis explains fluid homeostasis at high, mean and low capillary hydrostatic pressures. Plasma proteins and inorganic electrolytes contribute 0.4% and 94% to plasma osmolarity, respectively, so that plasma proteins have low osmotic (oncotic) pressure and despite high restriction of their passage across microvascular wall they contribute little to build up of osmotic counterpressure in comparison to electrolytes. However, absence or very low concentration of plasma proteins increases microvascular wall permeability to water and osmolytes compromising build up of osmotic counterpressure leading to development of interstial oedema.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.