• Medicine · Aug 2020

    Screening of significant biomarkers with poor prognosis in hepatocellular carcinoma via bioinformatics analysis.

    • Quanquan Sun, Peng Liu, Bin Long, Yuan Zhu, and Tongxin Liu.
    • Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences.
    • Medicine (Baltimore). 2020 Aug 7; 99 (32): e21702.

    AbstractHepatocellular carcinoma (HCC) is a malignant tumor with unsatisfactory prognosis. The abnormal genes expression is significantly associated with initiation and poor prognosis of HCC. The aim of the present study was to identify molecular biomarkers related to the initiation and development of HCC via bioinformatics analysis, so as to provide a certain molecular mechanism for individualized treatment of hepatocellular carcinoma.Three datasets (GSE101685, GSE112790, and GSE121248) from the GEO database were used for the bioinformatics analysis. Differentially expressed genes (DEGs) of HCC and normal liver samples were obtained using GEO2R online tools. Gene ontology term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were conducted via the Database for Annotation, Visualization, and Integrated Discovery online bioinformatics tool. The protein-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes database and hub genes were visualized by Cytoscape. Survival analysis and RNA sequencing expression were conducted by UALCAN and Gene Expression Profiling Interactive Analysis.A total of 115 shared DEGs were identified, including 30 upregulated genes and 85 downregulated genes in HCC samples. P53 signaling pathway and cell cycle were the major enriched pathways for the upregulated DEGs whereas metabolism-related pathways were the major enriched pathways for the downregulated DEGs. The PPI network was established with 105 nodes and 249 edges and 3 significant modules were identified via molecular complex detection. Additionally, 17 candidate genes from these 3 modules were significantly correlated with HCC patient survival and 15 of 17 genes exhibited high expression level in HCC samples. Moreover, 4 hub genes (CCNB1, CDK1, RRM2, BUB1B) were identified for further reanalysis of KEGG pathway, and enriched in 2 pathways, the P53 signaling pathway and cell cycle pathway.Overexpression of CCNB1, CDK1, RRM2, and BUB1B in HCC samples was correlated with poor survival in HCC patients, which could be potential therapeutic targets for HCC.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.