• Neuroscience · Mar 2021

    Mitigation of Microglia-mediated Acute Neuroinflammation and Tissue Damage by Heme Oxygenase 1 in a Rat Spinal Cord Injury Model.

    • Wenping Lin, Wenkai Chen, Kai Liu, Pengfei Ma, Peng Qiu, Can Zheng, Xin Zhang, Pingjuan Tan, Xiaojing Xi, and Xu He.
    • Department of Spine Surgery, Shenzhen Pingle Orthopedic Hospital, Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, China.
    • Neuroscience. 2021 Mar 1; 457: 27-40.

    AbstractAcute neuroinflammation is the major detrimental factor that causes secondary tissue damage after spinal cord injury (SCI). Curbing neuroinflammation would reduce the neuronal death and benefit functional recovery. In the current study, we used a HO-1-encoding lentivirus to transduce microglia, and adoptively transferred these microglia into injured rat spinal cords. Lentivirus-induced overexpression of exogenous HO-1 significantly inhibited microglia-mediated inflammatory response after SCI, as demonstrated by lower expression of pro-inflammatory mediators in transferred microglia. In addition, the overall post-SCI neuroinflammation was also suppressed by HO-1-overexpressing microglia, as indicated by less leukocyte infiltration and lower pro-inflammatory cytokine production in the spinal cord. Consistently, the tissue damage and neuronal apoptosis were decreased in injured spinal cords, while the locomotor function was moderately improved. We further identified that adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling was involved in the regulatory effect of HO-1 on microglia, because HO-1 overexpression increased the activating phosphorylation of AMPKα. Moreover, the AMPK inhibitor compound C diminished the anti-inflammatory effect of HO-1 in lipopolysaccharide-stimulated microglia in vitro. Taken together, we proved that microglial HO-1 reduced acute post-SCI neuroinflammation. Our study might provide a promising therapeutic approach to benefit SCI recovery.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.