• Neuroscience · Oct 2020

    Spinal and peripheral mechanisms individually lead to the development of remifentanil-induced hyperalgesia.

    • Yasuhiko Horii, Megumi Matsuda, Hitomi Takemura, Daiki Ishikawa, Teiji Sawa, and Fumimasa Amaya.
    • Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Unit for the Neurobiology of Pain, Kyoto Prefectural University of Medicine, Kyoto, Japan.
    • Neuroscience. 2020 Oct 15; 446: 28-42.

    AbstractThe present study was performed to determine neuronal loci and individual molecular mechanisms responsible for remifentanil-induced hyperalgesia. The effect of methylnaltrexone (MNX) on remifentanil-induced behavioral hyperalgesia was assessed to distinguish contributions of the peripheral and/or central nervous system to remifentanil-induced hyperalgesia. Phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) in the dorsal root ganglion (DRG) neurons after remifentanil infusion, and the effect of a p38MAPK inhibitor on remifentanil-induced hyperalgesia were analyzed to investigate involvement of p38MAPK in the peripheral mechanisms of remifentanil-induced hyperalgesia. Spinal levels of prodynorphin mRNA after remifentanil infusion, and the effect of the BK2 bradykinin receptor antagonist on remifentanil-induced hyperalgesia were investigated to assess potential spinal mechanisms. The effects of MNX and BK2 antagonists on remifentanil-induced exacerbation of post-incisional hyperalgesia were also investigated using behavioral analysis. Remifentanil infusion induced hyperalgesia in the early (4 h to 2 days) and late (8-14 days) post-infusion periods. MNX inhibited hyperalgesia only during the early post-infusion period. p38MAPK phosphorylation was observed in the DRG neuron, and the p38MAPK inhibitor inhibited hyperalgesia during the early post-infusion period. Prodynorphin expression increased in the spinal cord, and a BK2 antagonist inhibited hyperalgesia during the late post-infusion period. Remifentanil-induced exacerbation of incisional hyperalgesia was inhibited by MNX and the BK2 antagonist. The present study demonstrated that remifentanil activates peripheral and spinal neurons to promote chronologically distinctive hyperalgesia. p38MAPK phosphorylation in the DRG neuron leads to peripherally-driven hyperalgesia during the early post-infusion period, while spinal dynorphin-bradykinin signaling promotes hyperalgesia during the late post-infusion period.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.