• Neuroscience · Oct 2015

    Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology.

    • M J Eslamizade, F Saffarzadeh, S M M Mousavi, G H Meftahi, N Hosseinmardi, M Mehdizadeh, and M Janahmadi.
    • Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran; Neuroscience Research Center and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
    • Neuroscience. 2015 Oct 1; 305: 279-92.

    AbstractAmyloid beta (Aβ) accumulation plays an important role in the pathogenesis of Alzheimer's disease (AD) by changing the neuronal excitability. However, the cellular mechanisms by which accumulation of Aβ affects intrinsic neuronal properties are not well understood. The effect of bilateral intra-frontal cortex Aβ (1-42) peptide injection on the intrinsic excitability of hippocampal CA1 pyramidal neurons with particular focus on the contribution of hyperpolarization-activated (Ih) channel currents was examined using whole-cell patch-clamp recording. Passive avoidance memory impairment and morphological changes in rats receiving intra-frontal Aβ treatment were observed, which was associated with significant changes both in passive and active intrinsic electrical membrane properties of CA1 pyramidal neurons. Electrophysiological recording showed a significant decrease in neuronal excitability associated with an augmentation in the first spike after-hyperpolarization (AHP) amplitude. In addition, the depolarizing sag voltage was altered in neurons recorded from Aβ-treated group. In voltage-clamp condition, a hyperpolarizing activated inward current sensitive to ZD7288 and capsaicin was significantly increased in neurons from Aβ-treated rats. The Ih current density was increased and the activation curve was shifted toward less negative potential in the Aβ-treated group as compared to control group. The enhancing effect of Aβ treatment on Ih current was confirmed by showing upregulation of the mRNA of HCN1 channel in the CA1 pyramidal layer of hippocampi. These findings suggest the contribution of Ih and possibly TRPV1 channel currents to the changes induced by Aβ treatment in the intrinsic membrane properties, which, in turn, may provide therapeutic targets for treatment of AD.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.