• Curēus · Aug 2019

    Infections in Deep Brain Stimulator Surgery.

    • Jacob E Bernstein, Samir Kashyap, Kevin Ray, and Ajay Ananda.
    • Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA.
    • Cureus. 2019 Aug 20; 11 (8): e5440.

    IntroductionDeep brain stimulation has emerged as an effective treatment for movement disorders such as Parkinson's disease, dystonia, and essential tremor with estimates of >100,000 deep brain stimulators (DBSs) implanted worldwide since 1980s. Infections rates vary widely in the literature with rates as high as 25%. Traditional management of infection after deep brain stimulation is systemic antibiotic therapy with wound incision and debridement (I&D) and removal of implanted DBS hardware. The aim of this study is to evaluate the infections occurring after DBS placement and implantable generator (IPG) placement in order to better prevent and manage these infections.Materials/MethodsWe conducted a retrospective review of 203 patients who underwent implantation of a DBS at a single institution. For initial electrode placement, patients underwent either unilateral or bilateral electrode placement with implantation of the IPG at the same surgery and IPG replacements occurred as necessary. For patients with unilateral electrodes, repeat surgery for placement of contralateral electrode was performed when desired. Preoperative preparation with ethyl alcohol occurred in all patients while use of intra-operative vancomycin powder was surgeon dependent. All patients received 24 hours of postoperative antibiotics. Primary endpoint was surgical wound infection or brain abscess located near the surgically implanted DBS leads. Infections were classified as early (<90 days) or late (>90 days). Infectious organisms were recorded based on intra-operative wound cultures. Number of lead implantations, IPG replacements and choice of presurgical, intra-operative, and postsurgical antibiotics were recorded and outcomes compared.ResultsTwo hundred and three patients underwent 391 electrode insertions and 244 IPG replacements. Fourteen patients developed an infection (10 early versus 4 late); 12 after implantation surgery (3%) and 2 after IPG replacement surgery (0.8%). No intracranial abscesses were found. Most common sites were the chest and connector. Staphylococcus aureus (MSSA) was the most common organism. Intra-operative vancomycin powder did not decrease infection risk. Vancomycin powder use was shown to increase risk of infection after electrode implantation surgery (Relative Risk 5.5080, p = 0.02063). Complete hardware removal occurred in eight patients, one patient had electrode only removal, three patients with I&D and no removal of hardware, and two patients with removal of IPG and extensor cables only. All patients were treated with postoperative intravenous antibiotics and no recurrent infections were found in patients with hardware left in place.Discussion/ConclusionInfections after DBS implantation and IPG replacement occurred in 3% and 0.8% of patients respectively in our study which is lower than reported historically. Early infections were more common. No intracranial infections were found. Intra-operative use of vancomycin was not shown to decrease risk of infection after electrode implantation surgery or IPG replacement. However, in our study it was shown to increase risk of infection after electrode implantation surgery. Treatment includes antibiotic therapy and debridement with or without removal of hardware. DBS hardware can be safely left in place in select patients who may have significant adverse effects if it is removed.Copyright © 2019, Bernstein et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.