• Curēus · Jun 2020

    A Predictive Model for Patient Census and Ventilator Requirements at Individual Hospitals During the Coronavirus Disease 2019 (COVID-19) Pandemic: A Preliminary Technical Report.

    • Richard H Epstein and Franklin Dexter.
    • Anesthesiology, University of Miami Miller School of Medicine, Miami, USA.
    • Cureus. 2020 Jun 8; 12 (6): e8501.

    AbstractDuring the initial wave of the coronavirus disease 2019 (COVID-19) pandemic, many hospitals struggled to forecast bed capacity and the number of mechanical ventilators they needed to have available. Numerous epidemiological models forecast regional or national peak bed and ventilator needs, but these are not suitable for predictions at the hospital level. We developed an analytical model to assist hospitals in determining their census and ventilator requirements for COVID-19 patients during future periods of the pandemic, by using their data. This model is based on (1) projection of future daily admissions using counts from the previous seven days, (2) lengths of stay and duration of mechanical ventilation, and (3) the percentage of inpatients requiring mechanical ventilation. The implementation is done within an Excel (Microsoft, Redmond, WA) workbook without the use of add-ins or macro programming. The model inputs for each currently hospitalized patient with COVID-19 are the duration of hospitalization, whether the patient is currently receiving or has previously received mechanical ventilation, and the duration of the current ventilation episode, if applicable. Data validity and internal consistency are checked within the workbook, and errors are identified. Durations of care (length of hospital stay and duration of mechanical ventilation) are generated by fitting a two-parameter Weibull distribution to the hospital's historical data from the initial phase of the pandemic (incorporating censoring due to ongoing care), for which we provide source code in the R programming language (R Foundation for Statistical Computing, Vienna, Austria). Conditional distributions are then calculated using the hospital's current data. The output of the model is nearly instantaneous, producing an estimate of the census and the number of ventilators required in one, three, and seven days following the date on which the simulation is run. Given that the pandemic is ongoing, and a second surge of cases is expected with the reopening of the economy, having such a tool to predict resource needs for hospital planning purposes has been useful. A major benefit to individual hospitals from such modeling has been to provide reassurance to state and local governments that the hospitals have sufficient resources available to meet anticipated needs for new COVID-19 patients without having to set aside substantially greater numbers of beds or ventilators for such care. Such ongoing activity is important for the economic recovery of hospitals that have been hard-hit economically by the shutdown in elective surgery and other patient care activities. The modeling software is freely available at https://FDshort.com/COVID19, and its parameters can easily be modified by end-users.Copyright © 2020, Epstein et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.