• Wien. Klin. Wochenschr. · Jul 2021

    A data-driven framework for introducing predictive analytics into expanded program on immunization in Pakistan.

    • Sadaf Qazi, Muhammad Usman, and Azhar Mahmood.
    • Faculty of Computing and Engineering Science, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan.
    • Wien. Klin. Wochenschr. 2021 Jul 1; 133 (13-14): 695-702.

    BackgroundPakistan has a nationwide expanded program on immunization (EPI), yet vaccination coverage in Pakistan is quite low. Recently, an analytical model has been proposed to improve the coverage by identifying children who are most likely to miss any of the vaccines included in the immunization schedule, known as defaulters; however, a number of limitations remain unresolved in the previously proposed model. Firstly, it only classified children into two stages: defaulters and non-defaulters, considering all children at high risk of defaulting even if only one dose is missed. Secondly, there was no categorisation of high and low coverage areas for prioritised vaccination. The aim of this study was to propose a prediction framework for the accurate identification of defaulters.MethodsWe have utilised a sample dataset extracted from the Pakistan Demographic and Health Survey (PDHS, 2017-2018). This contained 7153 data records with 19 demographic and socioeconomic attributes, which were used for defaulter prediction and the identification of association rules to understand the relation between demographics of the child and the vaccination status.ResultsUsing a multilayer perceptron (MLP) classifier, the proposed model achieved 98% accuracy and 0.994 for the area under the curve (AUC), to correctly identify the children who are likely to default from immunization series at different risk stages.ConclusionThe proposed framework in this study is a step forward towards a data-driven approach and provides a set of machine learning techniques to utilise predictive analytics. Hence, this can reinforce immunization programs by expediting targeted action to reduce drop-outs.© 2020. Springer-Verlag GmbH Austria, part of Springer Nature.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.