-
- Justin C Hotz, Dinnel Bornstein, Kristen Kohler, Erin Smith, Anil Suresh, Margaret Klein, Anoopindar Bhalla, Christopher J Newth, and Robinder G Khemani.
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA.
- Pediatr Crit Care Me. 2020 Nov 1; 21 (11): 933-940.
ObjectivesMechanical ventilation of patients with acute respiratory distress syndrome should balance lung and diaphragm protective principles, which may be difficult to achieve in routine clinical practice. Through a Phase I clinical trial, we sought to determine whether a computerized decision support-based protocol (real-time effort-driven ventilator management) is feasible to implement, results in improved acceptance for lung and diaphragm protective ventilation, and improves clinical outcomes over historical controls.DesignInterventional nonblinded pilot study.SettingPICU.PatientsMechanically ventilated children with acute respiratory distress syndrome.InterventionsA computerized decision support tool was tested which prioritized lung-protective management of peak inspiratory pressure-positive end-expiratory pressure, positive end-expiratory pressure/FIO2, and ventilatory rate. Esophageal manometry was used to maintain patient effort in a physiologic range. Protocol acceptance was reported, and enrolled patients were matched 4:1 with respect to age, initial oxygenation index, and percentage of immune compromise to historical control patients for outcome analysis.Measurements And Main ResultsThirty-two patients were included. Acceptance of protocol recommendations was over 75%. One-hundred twenty-eight matched historical controls were used for analysis. Compared with historical controls, patients treated with real-time effort-driven ventilator management received lower peak inspiratory pressure-positive end-expiratory pressure and tidal volume, and higher positive end-expiratory pressure when FIO2 was greater than 0.60. Real-time effort-driven ventilator management was associated with 6 more ventilator-free days, shorter duration until the first spontaneous breathing trial and 3 fewer days on mechanical ventilation among survivors (all p ≤ 0.05) in comparison with historical controls, while maintaining no difference in the rate of reintubation.ConclusionsA computerized decision support-based protocol prioritizing lung-protective ventilation balanced with reduction of controlled ventilation to maintain physiologic levels of patient effort can be implemented and may be associated with shorter duration of ventilation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.