• Neuroscience · Nov 2020

    Caveolin-1 derived from brain microvascular endothelial cells inhibits neuronal differentiation of neural stem/progenitor cells in vivo and in vitro.

    • Yue Li, Yuming Zhao, Chong Gao, Meiling Wu, Kwok-Fai So, Yao Tong, and Jiangang Shen.
    • School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
    • Neuroscience. 2020 Nov 10; 448: 172-190.

    AbstractCaveolin-1 (Cav-1) is an important modulator for adult neurogenesis in post stroke brain repair but its underlying mechanisms are largely unknown. In the present study, we report that endothelial Cav-1 inhibits neuronal differentiation of neural stem/progenitor cells (NSCs/NPCs) in post ischemic brain via regulating vascular endothelial growth factor (VEGF) and NeuroD1 signaling pathway. We first investigated the dynamic change of Cav-1 and its impact on neuronal differentiation in rat and mouse models of 2 h transient middle cerebral artery occlusion (MCAO) plus 1, 7, 14, 21 and 28 day of reperfusion. We then studied the roles of endothelial Cav-1 in modulating the neuronal differentiation of NPCs which were co-cultured with brain microvascular endothelial cells (BMVECs) under 2 h oxygen-glucose deprivation plus 5 days reoxygenation (OGD/R). The major discoveries include: (1) Cav-1 expression in the hippocampal dentate gyrus (DG) was down-regulated on day 1 after 2 h cerebral ischemia, and gradually recovered with reperfusion time, accompanied with transient increased but gradually reduced neuronal differentiation of NPCs marked by doublecortin (DCX). (2) Cav-1 knockout mice exhibited the increased DCX and VEGF at the granular cell layers of hippocampal DG in post-ischemic brains. (3) Co-cultured with BMVECs, NPCs had remarkably decreased neuronal differentiation under OGD/R. Knockdown of Cav-1 in the BMVECs increased VEGF secretion into the medium and NeuroD1+ cells, and rescued the neuronal differentiation of NPCs without affecting astroglial and oligodendroglial differentiation. (4) Cav-1 exosomes released from BMVECs inhibited neuronal differentiation of NPCs via decreasing the expression of VEGF, p44/42MAPK phosphorylation and NeuronD1 upon OGD/R insults. Taken together, endothelial Cav-1 serves as a niche regulator to inhibit neuronal differentiation via negatively modulating VEGF, p44/42MAPK phosphorylation and NeuronD1 signaling pathway.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…