-
Comput Methods Programs Biomed · Nov 2020
Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor.
- Lijue Liu, Yongxia Jiao, Xihong Li, Yan Ouyang, and Danni Shi.
- School of Automation, Central South University, Changsha, Hunan, 410083, China; Hunan Zixing Intelligent Medical Technology Co., Ltd, Changsha, Hunan, 410000, China.
- Comput Methods Programs Biomed. 2020 Nov 1; 196: 105624.
Background And ObjectiveAccording to previous studies, after in vitro fertilization-embryo transfer (IVF-ET) there exist a high early pregnancy loss (EPL) rate. The objectives of this study were to construct a prediction model of embryonic development by using machine learning algorithms based on historical case data, in this way doctors can make more accurate suggestions on the number of patient follow-ups, and provide decision support for doctors who are relatively inexperienced in clinical practice.MethodsWe analyzed the significance of the same type of features between ongoing pregnancy samples and EPL samples. At the same time, by analyzing the correlation between days after embryo transfer (ETD) and fetal heart rate (FHR) of those normal embryo samples, a regression model between the two was established to obtain FHR model of normal development, and the residual analysis was used to further clarify the importance of FHR in predicting pregnancy outcome. Finally we applied six representative machine learning algorithms including Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Back Propagation Neural Network (BNN), XGBoost and Random Forest (RF) to build prediction models. Sensitivity was selected to evaluate prediction results, and accuracy of what each algorithm above predicted under both the conditions with and without FHR was compared as well.ResultsThere were statically significant differences in the same type of features between ongoing pregnancy samples and EPL samples, which could serve as predictors. FHR, of which the normal development showed a strong correlation with ETD, had great predictive value for embryonic development. Among the six predictive models the one predicted with the highest accuracy was Random Forest, of which recall ratio and F1 could reach 97%, and AUC could reach 0.97, FHR taken into account as a feature. In addition, Random Forest had a higher prediction accuracy rate for samples with longer ETD-its accuracy rate could reach 99% when predicting those at 10 weeks after embryo transfer.ConclusionIn this study, we established and compared six classification models to accurately predict EPL after the appearance of embryonic cardiac activity undergoing IVF-ET. Finally, Random Forest model outperformed the others. The implementation of Random Forest model in clinical environment can assist doctors to make clinical decisions.Copyright © 2020. Published by Elsevier B.V.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.