Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Sep 2021
ReviewA review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
With the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required. ⋯ Although research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.
-
Comput Methods Programs Biomed · Jun 2021
Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
Segmentation of the left ventricular (LV) myocardium (Myo) and RV endocardium on cine cardiac magnetic resonance (CMR) images represents an essential step for cardiac-function evaluation and diagnosis. In order to have a common reference for comparing segmentation algorithms, several CMR image datasets were made available, but in general they do not include the most apical and basal slices, and/or gold standard tracing is limited to only one of the two ventricles, thus not fully corresponding to real clinical practice. Our aim was to develop a deep learning (DL) approach for automated segmentation of both RV and LV chambers from short-axis (SAX) CMR images, reporting separately the performance for basal slices, together with the applied criterion of choice. ⋯ Our results support the potential of DL methods for accurate LV and RV contours segmentation and the advantages of dense skip connections in alleviating the semantic gap generated when high level features are concatenated with lower level feature. The evaluation on our dataset, considering separately the performance on basal and apical slices, reveals the potential of DL approaches for fast, accurate and reliable automated cardiac segmentation in a real clinical setting.
-
Comput Methods Programs Biomed · Mar 2021
Long-term use of the hybrid artificial pancreas by adjusting carbohydrate ratios and programmed basal rate: A reinforcement learning approach.
The hybrid artificial pancreas regulates glucose levels in people with type 1 diabetes. It delivers (i) insulin boluses at meal times based on the meals' carbohydrate content and the carbohydrate ratios (CRs) and (ii) insulin basal, between meals and at night, continuously modulated around individual-specific programmed basal rate. The CRs and programmed basal rate significantly vary between individuals and within the same individual with type 1 diabetes, and using suboptimal values in the hybrid artificial pancreas may degrade glucose control. We propose a reinforcement learning algorithm to adaptively optimize CRs and programmed basal rate to improve the performance of the hybrid artificial pancreas. ⋯ Results indicate that the proposed algorithm has the potential to improve glucose control in people with type 1 diabetes using the hybrid artificial pancreas. The proposed algorithm is a key in making the hybrid artificial pancreas adaptive for the long-term real life outpatient studies.
-
Comput Methods Programs Biomed · Jan 2021
Robust PID control of propofol anaesthesia: Uncertainty limits performance, not PID structure.
New proposals to improve the regulation of hypnosis in anaesthesia based on the development of advanced control structures emerge continuously. However, a fair study to analyse the real benefits of these structures compared to simpler clinically validated PID-based solutions has not been presented so far. The main objective of this work is to analyse the performance limitations associated with using a filtered PID controller, as compared to a high-order controller, represented through a Youla parameter. ⋯ Taking the same clinical and technical considerations into account for the optimisation of the different controllers, the design of individual-specific solutions resulted in only marginal differences in performance when comparing an optimal Youla parameter and its optimal filtered PID counterpart. The inter-patient variability is much more detrimental to performance than the limitations imposed by the simple structure of the filtered PID controller.
-
Comput Methods Programs Biomed · Jan 2021
A deep learning approach for sepsis monitoring via severity score estimation.
Sepsis occurs in response to an infection in the body and can progress to a fatal stage. Detection and monitoring of sepsis require multi-step analysis, which is time-consuming, costly and requires medically trained personnel. A metric called Sequential Organ Failure Assessment (SOFA) score is used to determine the severity of sepsis. This score depends heavily on laboratory measurements. In this study, we offer a computational solution for quantitatively monitoring sepsis symptoms and organ systems state without laboratory test. To this end, we propose to employ a regression-based analysis by using only seven vital signs that can be acquired from bedside in Intensive Care Unit (ICU) to predict the exact value of SOFA score of patients before sepsis occurrence. ⋯ By utilizing SOFA scores, our framework facilitates the prognose of sepsis and infected organ systems state. While previous studies focused only on predicting presence of sepsis, our model aims at providing a prognosis solution for sepsis. SOFA score estimation process in ICU depends on laboratory environment. This dependence causes delays in treating patients, which in turn may increase the risk of complications. By using easily accessible non-invasive vital signs that are routinely collected in ICU, our framework can eliminate this delay. We believe that the estimation of the SOFA score will also help health professionals to monitor organ states.