Computer methods and programs in biomedicine
-
Comput Methods Programs Biomed · Jun 2021
Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
Segmentation of the left ventricular (LV) myocardium (Myo) and RV endocardium on cine cardiac magnetic resonance (CMR) images represents an essential step for cardiac-function evaluation and diagnosis. In order to have a common reference for comparing segmentation algorithms, several CMR image datasets were made available, but in general they do not include the most apical and basal slices, and/or gold standard tracing is limited to only one of the two ventricles, thus not fully corresponding to real clinical practice. Our aim was to develop a deep learning (DL) approach for automated segmentation of both RV and LV chambers from short-axis (SAX) CMR images, reporting separately the performance for basal slices, together with the applied criterion of choice. ⋯ Our results support the potential of DL methods for accurate LV and RV contours segmentation and the advantages of dense skip connections in alleviating the semantic gap generated when high level features are concatenated with lower level feature. The evaluation on our dataset, considering separately the performance on basal and apical slices, reveals the potential of DL approaches for fast, accurate and reliable automated cardiac segmentation in a real clinical setting.