• J Res Med Sci · Sep 2013

    Cost prediction of antipsychotic medication of psychiatric disorder using artificial neural network model.

    • Arash Mirabzadeh, Enayatollah Bakhshi, Mohamad Reza Khodae, Mohamad Reza Kooshesh, Bibi Riahi Mahabadi, Hossein Mirabzadeh, and Akbar Biglarian.
    • Department of Psychiatric, Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences (USWRS), Tehran, Iran.
    • J Res Med Sci. 2013 Sep 1; 18 (9): 782-5.

    BackgroundAntipsychotic monotherapy or polypharmacy (concurrent use of two or more antipsychotics) are used for treating patients with psychiatric disorders (PDs). Usually, antipsychotic monotherapy has a lower cost than polypharmacy. This study aimed to predict the cost of antipsychotic medications (AM) of psychiatric patients in Iran.Materials And MethodsFor this purpose, 790 patients with PDs who were discharged between June and September 2010 were selected from Razi Psychiatric Hospital, Tehran, Iran. For cost prediction of AM of PD, neural network (NN) and multiple linear regression (MLR) models were used. Analysis of data was performed with R 2.15.1 software.ResultsMean ± standard deviation (SD) of the duration of hospitalization (days) in patients who were on monotherapy and polypharmacy was 31.19 ± 15.55 and 36.69 ± 15.93, respectively (P < 0.001). Mean and median costs of medication for monotherapy (n = 507) were $8.25 and $6.23 and for polypharmacy (n =192) were $13.30 and $9.48, respectively (P = 0.001). The important variables for cost prediction of AM were duration of hospitalization, type of treatment, and type of psychiatric ward in the MLR model, and duration of hospitalization, type of diagnosed disorder, type of treatment, age, Chlorpromazine dosage, and duration of disorder in the NN model.ConclusionOur findings showed that the artificial NN (ANN) model can be used as a flexible model for cost prediction of AM.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.