-
- Salvatore Pasta, Valentina Agnese, Marzio Di Giuseppe, Giovanni Gentile, Giuseppe M Raffa, Diego Bellavia, and Michele Pilato.
- Fondazione Ri.MED, Palermo, Italy. spasta@fondazionerimed.com.
- Ann Biomed Eng. 2017 Dec 1; 45 (12): 2911-2920.
AbstractAccurate assessment of aortic extensibility is a requisite first step for elucidating the pathophysiology of an ascending thoracic aortic aneurysm (ATAA). This study aimed to develop a framework for the in vivo evaluation of the full-field distribution of the aortic wall strain by imaging analysis of electrocardiographic- (ECG) gated thoracic data of 34 patients with ATAA. Seven healthy controls (i.e., non-aneurysmal aorta) from patients who underwent ECG-gated CT angiography for coronary artery diseases were included for comparison. To evaluate the systolic function, ECG-gated computed tomography (CT) angiography was used to generate patient-specific geometric meshes of the ascending aorta, and then to estimate both the displacement and strain fields using a mathematical algorithm. Results evidenced stiff behavior for the aneurysmal aorta compared with that of the healthy ascending aorta of the controls, with patients over 55 years of age displaying significantly lower extensibility. Moreover, the patient risk as quantified by the ratio of in vivo strain to the ruptured one increased significantly with increased systolic blood pressure, older age, and higher pressure-strain modulus. Statistical analysis also indicated that an increased pressure-strain modulus is a risk factor for ATAAs with bicuspid aortic valve, suggesting a different mechanism of failure in these patients. The approach here proposed for the in vivo evaluation of the aortic wall strain is simple and fast, with promising applicability in routine clinical imaging, and could be used to develop a rupture potential criterion on the basis of the aortic aneurysm extensibility.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.