• Curēus · Mar 2020

    Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter.

    • Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem, Molly B El Alam, Basil Karam, Elio Adib, Jabra Zarka, Cindy Traboulsi, Elie W Akl, and Khalil Baddour.
    • Faculty of Medicine, American University of Beirut, Beirut, LBN.
    • Cureus. 2020 Mar 13; 12 (3): e7255.

    AbstractBackground Since the beginning of the coronavirus disease 2019 (COVID-19) epidemic, misinformation has been spreading uninhibited over traditional and social media at a rapid pace. We sought to analyze the magnitude of misinformation that is being spread on Twitter (Twitter, Inc., San Francisco, CA) regarding the coronavirus epidemic.  Materials and methods We conducted a search on Twitter using 14 different trending hashtags and keywords related to the COVID-19 epidemic. We then summarized and assessed individual tweets for misinformation in comparison to verified and peer-reviewed resources. Descriptive statistics were used to compare terms and hashtags, and to identify individual tweets and account characteristics. Results The study included 673 tweets. Most tweets were posted by informal individuals/groups (66%), and 129 (19.2%) belonged to verified Twitter accounts. The majority of included tweets contained serious content (91.2%); 548 tweets (81.4%) included genuine information pertaining to the COVID-19 epidemic. Around 70% of the tweets tackled medical/public health information, while the others were pertaining to sociopolitical and financial factors. In total, 153 tweets (24.8%) included misinformation, and 107 (17.4%) included unverifiable information regarding the COVID-19 epidemic. The rate of misinformation was higher among informal individual/group accounts (33.8%, p: <0.001). Tweets from unverified Twitter accounts contained more misinformation (31.0% vs 12.6% for verified accounts, p: <0.001). Tweets from healthcare/public health accounts had the lowest rate of unverifiable information (12.3%, p: 0.04). The number of likes and retweets per tweet was not associated with a difference in either false or unverifiable content. The keyword "COVID-19" had the lowest rate of misinformation and unverifiable information, while the keywords "#2019_ncov" and "Corona" were associated with the highest amount of misinformation and unverifiable content respectively. Conclusions Medical misinformation and unverifiable content pertaining to the global COVID-19 epidemic are being propagated at an alarming rate on social media. We provide an early quantification of the magnitude of misinformation spread and highlight the importance of early interventions in order to curb this phenomenon that endangers public safety at a time when awareness and appropriate preventive actions are paramount.Copyright © 2020, Kouzy et al.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.