-
Physiological measurement · Apr 2018
Emergence EEG pattern classification in sevoflurane anesthesia.
- Zhenhu Liang, Cheng Huang, Yongwang Li, Darren F Hight, Logan J Voss, Jamie W Sleigh, Xiaoli Li, and Yang Bai.
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, People's Republic of China.
- Physiol Meas. 2018 Apr 26; 39 (4): 045006.
ObjectiveSignificant spectral electroencephalogram (EEG) pattern characteristics exist in individual patients during the re-establishment of consciousness after general anesthesia. However, these EEG patterns cannot be quantitatively identified using commercially available depth of anesthesia (DoA) monitors. This study proposes an effective classification method and indices to classify these patterns among patients.ApproachFour types of emergence EEG patterns were identified based on the EEG data set from 52 patients undergoing sevoflurane general anesthesia from two hospitals. Then, the relative power spectrum density (RPSD) of five frequency sub-bands of clinical interest (delta, theta, alpha, beta and gamma) were selected for emergence state analysis. Finally, a genetic algorithm support vector machine (GA-SVM) was used to identify the emergence EEG patterns. The performance was reported in terms of sensitivity (SE), specificity (SP) and accuracy (AC).Main ResultsThe combination of the mean and mode of RPSD in the delta and alpha band (P (delta)/P (alpha) performed the best in the GA-SVM classification. The AC indices obtained by GA-SVM across the four patterns were 90.64 ± 7.61, 81.79 ± 5.84, 82.14 ± 7.99 and 72.86 ± 11.11 respectively. Furthermore, the emergence time of the patients with EEG emergence patterns I and III increased as the patients' age increased. However, for patients with EEG emergence pattern IV, the emergence time positively correlates with the patients' age when they are under 50, and negatively correlates with it when they are over 50.SignificanceThe mean and mode of P (delta)/P (alpha) is a useful index to classify the different emergence EEG patterns. In addition, these patterns may correlate with an underlying neural substrate which is related to the patients' age. Highlights ► Four emergence EEG patterns were found in γ-amino-butyric acid (GABA)-ergic anesthetic drugs. ► A genetic algorithm combined with a support vector machine (GA-SVM) was proposed to identify the emergence EEG patterns. ► The relative power spectrum density (RPSD) was used as a feature to classify the emergence EEG patterns and good accuracy was achieved. ► The statistics shows that the emergence EEG patterns are age-related and may have value in assessing postoperative brain states.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.