-
Arterioscler. Thromb. Vasc. Biol. · Feb 2016
Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation.
- Jan-Marcus Daniel, André Prock, Jochen Dutzmann, Kristina Sonnenschein, Thomas Thum, Johann Bauersachs, and Daniel G Sedding.
- From the Department of Cardiology and Angiology (J.-M.D., J.D., K.S., J.B., D.G.S.), REBIRTH Excellence Cluster (J.-M.D., T.T., J.B., D.G.S.), and Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (K.S., T.T.), Hannover Medical School, Hannover, Germany; Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany (A.P.); and National Heart and Lung Institute, Imperial College London, London, UK (T.T.).
- Arterioscler. Thromb. Vasc. Biol. 2016 Feb 1; 36 (2): 317-27.
ObjectiveRegulator of G-protein signaling 5 (RGS5) is abundantly expressed in vascular smooth muscle cells (SMCs) and inhibits G-protein signaling by enhancing the guanosine triphosphate-hydrolyzing activity of Gα-subunits. In the present study, we investigated the effects of RGS5 on vascular SMC function in vitro and neointima formation after wire-induced injury in mice and determined the underlying mechanisms.Approach And ResultsWe found a robust expression of RGS5 in native arteries of C57BL/6 mice and a highly significant downregulation within neointimal lesions 10 and 21 days after vascular injury as assessed by quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. In vitro, RGS5 was found significantly downregulated after mitogenic stimulation of human coronary artery SMCs. To restore RGS5 levels, SMCs were transduced with adenoviral vectors encoding wild-type RGS5 or a nondegradable mutant. RGS5-WT and, even more prominently, the C2A-RGS5 mutant prevented SMC proliferation and migration. In contrast, the siRNA-mediated knockdown of RGS5 significantly augmented SMC proliferation. Following overexpression of RGS5, fluorescence-activated cell sorting analysis of propidium iodide-stained cells indicated cell cycle arrest in G0/G1 phase. Mechanistically, inhibition of the phosphorylation of the extracellular signal-regulated kinase 1/2 and mitogen-activated protein kinase downstream signaling was shown to be responsible for the anti-proliferative effect of RGS5. Following wire-induced injury of the femoral artery in C57BL/6 mice, adenoviral-mediated overexpression of RGS5-WT or C2A-RGS5 significantly reduced SMC proliferation and neointima formation in vivo.ConclusionsDownregulation of RGS5 is an important prerequisite for SMC proliferation in vitro and in vivo. Therefore, reconstitution of RGS5 levels represents a promising therapeutic option to prevent vascular remodeling processes.© 2015 American Heart Association, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.