-
Medical image analysis · Oct 2019
Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT.
- Yutong Xie, Jianpeng Zhang, and Yong Xia.
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Med Image Anal. 2019 Oct 1; 57: 237-248.
AbstractClassification of benign-malignant lung nodules on chest CT is the most critical step in the early detection of lung cancer and prolongation of patient survival. Despite their success in image classification, deep convolutional neural networks (DCNNs) always require a large number of labeled training data, which are not available for most medical image analysis applications due to the work required in image acquisition and particularly image annotation. In this paper, we propose a semi-supervised adversarial classification (SSAC) model that can be trained by using both labeled and unlabeled data for benign-malignant lung nodule classification. This model consists of an adversarial autoencoder-based unsupervised reconstruction network R, a supervised classification network C, and learnable transition layers that enable the adaption of the image representation ability learned by R to C. The SSAC model has been extended to the multi-view knowledge-based collaborative learning, aiming to employ three SSACs to characterize each nodule's overall appearance, heterogeneity in shape and texture, respectively, and to perform such characterization on nine planar views. The MK-SSAC model has been evaluated on the benchmark LIDC-IDRI dataset and achieves an accuracy of 92.53% and an AUC of 95.81%, which are superior to the performance of other lung nodule classification and semi-supervised learning approaches.Copyright © 2019 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.