Medical image analysis
-
Medical image analysis · Oct 2019
Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT.
Classification of benign-malignant lung nodules on chest CT is the most critical step in the early detection of lung cancer and prolongation of patient survival. Despite their success in image classification, deep convolutional neural networks (DCNNs) always require a large number of labeled training data, which are not available for most medical image analysis applications due to the work required in image acquisition and particularly image annotation. ⋯ The SSAC model has been extended to the multi-view knowledge-based collaborative learning, aiming to employ three SSACs to characterize each nodule's overall appearance, heterogeneity in shape and texture, respectively, and to perform such characterization on nine planar views. The MK-SSAC model has been evaluated on the benchmark LIDC-IDRI dataset and achieves an accuracy of 92.53% and an AUC of 95.81%, which are superior to the performance of other lung nodule classification and semi-supervised learning approaches.