• NMR in biomedicine · Dec 2015

    Spectral fitting using basis set modified by measured B0 field distribution.

    • Ningzhi Li, Li An, and Jun Shen.
    • Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
    • NMR Biomed. 2015 Dec 1; 28 (12): 1707-15.

    AbstractThis study sought to demonstrate and evaluate a novel spectral fitting method to improve quantification accuracy in the presence of large magnetic field distortion, especially with high fields. MRS experiments were performed using a point-resolved spectroscopy (PRESS)-type sequence at 7 T. A double-echo gradient echo (GRE) sequence was used to acquire B0 maps following MRS experiments. The basis set was modified based on the measured B0 distribution within the MRS voxel. Quantification results were obtained after fitting the measured MRS data using the modified basis set. The proposed method was validated using numerical Monte Carlo simulations, phantom measurements, and comparison of occipital lobe MRS measurements under homogeneous and inhomogeneous magnetic field conditions. In vivo results acquired from voxels placed in thalamus and prefrontal cortex regions close to the frontal sinus agreed well with published values. Instead of noise-amplifying complex division, the proposed method treats field variations as part of the signal model, thereby avoiding inherent statistical bias associated with regularization. Simulations and experiments showed that the proposed approach reliably quantified results in the presence of relatively large magnetic field distortion. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…