• Plos One · Jan 2020

    Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest.

    • Jose Julio Gutiérrez, Jesus María Ruiz, Sofía Ruiz de Gauna, Digna María González-Otero, Mikel Leturiondo, James Knox Russell, Carlos Corcuera, Juan Francisco Urtusagasti, and Mohamud Ramzan Daya.
    • Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain.
    • Plos One. 2020 Jan 1; 15 (2): e0228395.

    AimCurrent resuscitation guidelines recommend waveform capnography as an indirect indicator of perfusion during cardiopulmonary resuscitation (CPR). Chest compressions (CCs) and ventilations during CPR have opposing effects on the exhaled carbon dioxide (CO2) concentration, which need to be better characterized. The purpose of this study was to model the impact of ventilations in the exhaled CO2 measured from capnograms collected during out-of-hospital cardiac arrest (OHCA) resuscitation.MethodsWe retrospectively analyzed OHCA monitor-defibrillator files with concurrent capnogram, compression depth, transthoracic impedance and ECG signals. Segments with CC pauses, two or more ventilations, and with no pulse-generating rhythm were selected. Thus, only ventilations should have caused the decrease in CO2 concentration. The variation in the exhaled CO2 concentration with each ventilation was modeled with an exponential decay function using non-linear-least-squares curve fitting.ResultsOut of the original 1002 OHCA dataset (one per patient), 377 episodes had the required signals, and 196 segments from 96 patients met the inclusion criteria. Airway type was endotracheal tube in 64.8% of the segments, supraglottic King LT-D™ in 30.1%, and unknown in 5.1%. Median (IQR) decay factor of the exhaled CO2 concentration was 10.0% (7.8 - 12.9) with R2 = 0.98(0.95 - 0.99). Differences in decay factor with airway type were not statistically significant (p = 0.17). From these results, we propose a model for estimating the contribution of CCs to the end-tidal CO2 level between consecutive ventilations and for estimating the end-tidal CO2 variation as a function of ventilation rate.ConclusionWe have modeled the decrease in exhaled CO2 concentration with ventilations during chest compression pauses in CPR. This finding allowed us to hypothesize a mathematical model for explaining the effect of chest compressions on ETCO2 compensating for the influence of ventilation rate during CPR. However, further work is required to confirm the validity of this model during ongoing chest compressions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…