• Scientific reports · Dec 2019

    Population-based volume kinetics of crystalloids and colloids in healthy volunteers.

    • Jung-Min Yi, Ji-Yeon Bang, Bohyun Choi, Changhun Cho, Yong-Hun Lee, Eun-Kyung Lee, Byung-Moon Choi, and Gyu-Jeong Noh.
    • Department of Anesthesiology and Pain Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea.
    • Sci Rep. 2019 Dec 9; 9 (1): 18638.

    AbstractWe characterized the volume kinetics of crystalloid solutions (Ringer's lactate solution and 5% dextrose water) and colloid solutions (6% tetrastarch and 10% pentastarch) by nonlinear mixed-effects modeling in healthy volunteers. We also assessed whether the bioelectrical impedance analysis parameters are significant covariates for volume kinetic parameters. Twelve male volunteers were randomly allocated to four groups, and each group received the four fluid solutions in specified sequences, separated by 1-week intervals to avoid any carryover effects. Volunteers received 40 ml/kg Ringer's lactate solution, 20 ml/kg 5% dextrose water, 1000 ml 6% tetrastarch, and 1000 ml 10% pentastarch over 1 h. Arterial blood samples were collected to measure the hemoglobin concentration at different time points. Bioelectrical impedance spectroscopy (BIS, INBODY S10, InBody CO., LTD, Seoul, Korea) was also carried out at preset time points. In total, 671 hemoglobin-derived plasma dilution data points were used to determine the volume kinetic characteristics of each fluid. The changes in plasma dilution induced by administration of crystalloid and colloid solutions were well-described by the two-volume and one-volume models, respectively. Extracellular water was a significant covariate for the peripheral volume of distribution at baseline in the volume kinetic model of Ringer's lactate solution. When the same amount was administered, the colloid solutions had ~4 times more plasma expansion effect than did the crystalloid solutions. Starches with larger molecular weights maintained the volume expansion effect longer than those with smaller molecular weights.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.