• Ann Med Surg (Lond) · Nov 2020

    Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study.

    • Logan Ryan, Carson Lam, Samson Mataraso, Angier Allen, Abigail Green-Saxena, Emily Pellegrini, Jana Hoffman, Christopher Barton, Andrea McCoy, and Ritankar Das.
    • Dascena, Inc., San Francisco, CA, USA.
    • Ann Med Surg (Lond). 2020 Nov 1; 59: 207-216.

    RationalePrediction of patients at risk for mortality can help triage patients and assist in resource allocation.ObjectivesDevelop and evaluate a machine learning-based algorithm which accurately predicts mortality in COVID-19, pneumonia, and mechanically ventilated patients.MethodsRetrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The outcome of interest was in-hospital patient mortality.ResultsWhen trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, MEWS and CURB-65 risk scores at all prediction windows.ConclusionsThis machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients as well as those diagnosed with pneumonia and COVID-19.© 2020 IJS Publishing Group Ltd. Published by Elsevier Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.