• Orthop J Sports Med · Feb 2015

    Reconstruction of the Posterolateral Corner After Sequential Sectioning Restores Knee Kinematics.

    • Stephane Plaweski, Baptiste Belvisi, and Alexandre Moreau-Gaudry.
    • Orthopaedic and Sports Traumatology Department, University of Grenoble, CHU Grenoble South Hospital, Grenoble, France.
    • Orthop J Sports Med. 2015 Feb 1; 3 (2): 2325967115570560.

    BackgroundVarious surgical techniques to treat posterolateral knee instability have been described. To date, the recommended treatment is an anatomic form of reconstruction in which the 3 key structures of the posterolateral corner (PLC) are addressed: the popliteofibular ligament, the popliteus tendon, and the lateral collateral ligament.Purpose/HypothesisThe purpose of this study was to identify the role of each key structure of the PLC in kinematics of the knee and to biomechanically analyze a single-graft, fibular-based reconstruction that replicates the femoral insertions of the lateral collateral ligament and popliteus to repair the PLC. The hypothesis was that knee kinematics can be reasonably restored using a single graft with a 2-strand "modified Larson" technique.Study DesignDescriptive laboratory study.MethodsEight fresh-frozen cadaveric knees were used in this study. We conducted sequential sectioning of the popliteofibular ligament (PFL) and then subsequently the popliteal tendon (PT), the lateral collateral ligament (LCL), and the anterior cruciate ligament (ACL). We then reconstructed the ACL first and then the posterolateral corner using the modified Larson technique. A surgical navigation system was used to measure varus laxity and external rotation at 0°, 30°, 60°, and 90° with a 9.8-N·m varus stress and 5-N·m external rotation force applied to the tibia.ResultsIn extension, varus laxity increased only after the sectioning of the lateral collateral ligament. At 30° of flexion, external rotation in varus and translation of the lateral tibial plateau increased after the isolated popliteofibular ligament section. From 60° to 90° of flexion, translation and mobility of the lateral plateau section increased after sectioning of the PFL. After reconstruction, we observed a restoration of external varus rotation in extension and translation of the lateral tibial plateau at 90° of flexion. This technique provided kinematics similar to the normal knee.ConclusionThe PFL has a key role between 30° and 90° of flexion, and the lateral collateral ligament plays a role in extension. Reconstruction with the modified Larson technique restores these 2 complementary stabilizers of the knee.Clinical RelevanceAlthough there are many different techniques to reconstruct the PLC-deficient knee, this study indicates that a single-graft, fibular-based reconstruction of the LCL and PT may restore varus and external rotation laxity to the knee.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…