• Journal of critical care · Apr 2021

    Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19.

    • Varun Arvind, Jun S Kim, Brian H Cho, Eric Geng, and Samuel K Cho.
    • Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
    • J Crit Care. 2021 Apr 1; 62: 253025-30.

    PurposeThe purpose of this study is to develop a machine learning algorithm to predict future intubation among patients diagnosed or suspected with COVID-19.Materials And MethodsThis is a retrospective cohort study of patients diagnosed or under investigation for COVID-19. A machine learning algorithm was trained to predict future presence of intubation based on prior vitals, laboratory, and demographic data. Model performance was compared to ROX index, a validated prognostic tool for prediction of mechanical ventilation.Results4087 patients admitted to five hospitals between February 2020 and April 2020 were included. 11.03% of patients were intubated. The machine learning model outperformed the ROX-index, demonstrating an area under the receiver characteristic curve (AUC) of 0.84 and 0.64, and area under the precision-recall curve (AUPRC) of 0.30 and 0.13, respectively. In the Kaplan-Meier analysis, patients alerted by the model were more likely to require intubation during their admission (p < 0.0001).ConclusionIn patients diagnosed or under investigation for COVID-19, machine learning can be used to predict future risk of intubation based on clinical data which are routinely collected and available in clinical setting. Such an approach may facilitate identification of high-risk patients to assist in clinical care.Copyright © 2020. Published by Elsevier Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.