• Journal of neurosurgery · Aug 2015

    A comparison of head dynamic response and brain tissue stress and strain using accident reconstructions for concussion, concussion with persistent postconcussive symptoms, and subdural hematoma.

    • R Anna Oeur, Clara Karton, Andrew Post, Philippe Rousseau, T Blaine Hoshizaki, Shawn Marshall, Susan E Brien, Aynsley Smith, Michael D Cusimano, and Michael D Gilchrist.
    • School of Human Kinetics, University of Ottawa;
    • J. Neurosurg. 2015 Aug 1;123(2):415-22.

    ObjectConcussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH.MethodsReconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p < 0.05.ResultsA significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec(2), respectively) than the concussion group (149 g and 8111 rad/sec(2), respectively; p < 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress.ConclusionsThe reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…