• Comput Methods Programs Biomed · Sep 2019

    An intelligent warning model for early prediction of cardiac arrest in sepsis patients.

    • Samaneh Layeghian Javan, Mohammad Mehdi Sepehri, Malihe Layeghian Javan, and Toktam Khatibi.
    • Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran 1411713116, Iran. Electronic address: samaneh.layeghian@gmail.com.
    • Comput Methods Programs Biomed. 2019 Sep 1; 178: 47-58.

    BackgroundSepsis-associated cardiac arrest is a common issue with the low survival rate. Early prediction of cardiac arrest can provide the time required for intervening and preventing its onset in order to reduce mortality. Several studies have been conducted to predict cardiac arrest using machine learning. However, no previous research has used machine learning for predicting cardiac arrest in adult sepsis patients. Moreover, the potential of some techniques, including ensemble algorithms, has not yet been addressed in improving the prediction outcomes. It is required to find methods for generating high-performance predictions with sufficient time lapse before the arrest. In this regard, various variables and parameters should also been examined.ObjectiveThe aim was to use machine learning in order to propose a cardiac arrest prediction model for adult patients with sepsis. It is required to predict the arrest several hours before the incidence with high efficiency. The other goal was to investigate the effect of the time series dynamics of vital signs on the prediction of cardiac arrest.Method30 h clinical data of every sepsis patients were extracted from Mimic III database (79 cases, 4532 controls). Three datasets (multivariate, time series and combined) were created. Various machine learning models for six time groups were trained on these datasets. The models included classical techniques (SVM, decision tree, logistic regression, KNN, GaussianNB) and ensemble methods (gradient Boosting, XGBoost, random forest, balanced bagging classifier and stacking). Proper solutions were proposed to address the challenges of missing values, imbalanced classes of data and irregularity of time series.ResultsThe best results were obtained using a stacking algorithm and multivariate dataset (accuracy = 0.76, precision = 0.19, sensitivity = 0.77, f1-score = 0.31, AUC= 0.82). The proposed model predicts the arrest incidence of up to six hours earlier with the accuracy and sensitivity over 70%.ConclusionWe illustrated that machine learning techniques, especially ensemble algorithms have high potentials to be used in prognostic systems for sepsis patients. The proposed model, in comparison with the exiting warning systems including APACHE II and MEWS, significantly improved the evaluation criteria. According to the results, the time series dynamics of vital signs are of great importance in the prediction of cardiac arrest incidence in sepsis patients.Copyright © 2019 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.