-
Comput Methods Programs Biomed · Apr 2018
Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction.
- Yeong Shiong Chiew, Chee Pin Tan, J Geoffrey Chase, Yeong Woei Chiew, Thomas Desaive, Azrina Md Ralib, and Mohd Basri Mat Nor.
- School of Engineering, Monash University, Subang Jaya, Malaysia. Electronic address: chiew.yeong.shiong@monash.edu.
- Comput Methods Programs Biomed. 2018 Apr 1; 157: 217-224.
Background And ObjectiveRespiratory mechanics estimation can be used to guide mechanical ventilation (MV) but is severely compromised when asynchronous breathing occurs. In addition, asynchrony during MV is often not monitored and little is known about the impact or magnitude of asynchronous breathing towards recovery. Thus, it is important to monitor and quantify asynchronous breathing over every breath in an automated fashion, enabling the ability to overcome the limitations of model-based respiratory mechanics estimation during asynchronous breathing ventilation.MethodsAn iterative airway pressure reconstruction (IPR) method is used to reconstruct asynchronous airway pressure waveforms to better match passive breathing airway waveforms using a single compartment model. The reconstructed pressure enables estimation of respiratory mechanics of airway pressure waveform essentially free from asynchrony. Reconstruction enables real-time breath-to-breath monitoring and quantification of the magnitude of the asynchrony (MAsyn).Results And DiscussionOver 100,000 breathing cycles from MV patients with known asynchronous breathing were analyzed. The IPR was able to reconstruct different types of asynchronous breathing. The resulting respiratory mechanics estimated using pressure reconstruction were more consistent with smaller interquartile range (IQR) compared to respiratory mechanics estimated using asynchronous pressure. Comparing reconstructed pressure with asynchronous pressure waveforms quantifies the magnitude of asynchronous breathing, which has a median value MAsyn for the entire dataset of 3.8%.ConclusionThe iterative pressure reconstruction method is capable of identifying asynchronous breaths and improving respiratory mechanics estimation consistency compared to conventional model-based methods. It provides an opportunity to automate real-time quantification of asynchronous breathing frequency and magnitude that was previously limited to invasively method only.Copyright © 2018 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.