• World Neurosurg · May 2021

    Convolutional Neural Networks for Pediatric Refractory Epilepsy Classification Using Resting-State fMRI.

    • Ryan D Nguyen, Emmett H Kennady, Matthew D Smyth, Liang Zhu, Ludovic P Pao, Shannon K Swisher, Alberto Rosas, Anish Mitra, Rajan P Patel, Jeremy Lankford, Gretchen Von Allmen, Michael W Watkins, Michael E Funke, and Manish N Shah.
    • Department of Pediatric Surgery and Neurosurgery, McGovern Medical School at UTHealth, Houston, Texas, USA. Electronic address: ryan90nguyen@tamu.edu.
    • World Neurosurg. 2021 May 1; 149: e1112-e1122.

    ObjectiveThis study aims to evaluate the performance of convolutional neural networks (CNNs) trained with resting-state functional magnetic resonance imaging (rfMRI) latency data in the classification of patients with pediatric epilepsy from healthy controls.MethodsPreoperative rfMRI and anatomic magnetic resonance imaging scans were obtained from 63 pediatric patients with refractory epilepsy and 259 pediatric healthy controls. Latency maps of the temporal difference between rfMRI and the global mean signal were calculated using voxel-wise cross-covariance. Healthy control and epilepsy latency z score maps were pseudorandomized and partitioned into training data (60%), validation data (20%), and test data (20%). Healthy control individuals and patients with epilepsy were labeled as negative and positive, respectively. CNN models were then trained with the designated training data. Model hyperparameters were evaluated with a grid-search method. The model with the highest sensitivity was evaluated using unseen test data. Accuracy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve were used to evaluate the ability of the model to classify epilepsy in the test data set.ResultsThe model with the highest validation sensitivity correctly classified 74% of unseen test patients with 85% sensitivity, 71% specificity, F1 score of 0.56, and an area under the receiver operating characteristic curve of 0.86.ConclusionsUsing rfMRI latency data, we trained a CNN model to classify patients with pediatric epilepsy from healthy controls with good performance. CNN could serve as an adjunct in the diagnosis of pediatric epilepsy. Identification of pediatric epilepsy earlier in the disease course could decrease time to referral to specialized epilepsy centers and thus improve prognosis in this population.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.