• Nutrition · Apr 2021

    New anthropometric and biochemical models for estimating appendicular skeletal muscle mass in male patients with cirrhosis.

    • Giliane Belarmino, Raquel Susana Torrinhas, Natália V Magalhães, Steven B Heymsfield, and Dan L Waitzberg.
    • Department of Gastroenterology, Surgical Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil. Electronic address: giliane85@hotmail.com.
    • Nutrition. 2021 Apr 1; 84: 111083.

    ObjectivesThe use of easily accessible methods to estimate skeletal muscle mass (SMM) in patients with cirrhosis is often limited by the presence of edema and ascites, precluding a reliable diagnosis of sarcopenia. The aim of this study was to design predictive models using variables derived from anthropometric and/or biochemical measures to estimate SMM; and to validate their applicability in diagnosing sarcopenia in patients with cirrhosis.MethodsAnthropometric and biochemical data were obtained from 124 male patients (18-76 y of age) with cirrhosis who also underwent dual-energy x-ray absorptiometry (DXA) and handgrip strength (HGS) assessments to identify low SMM and diagnose sarcopenia using reference cutoff values. Univariate analyses for variable selection were applied to generate predictive decision tree models for low SMM. Model accuracy for the prediction of low SMM and sarcopenia (when associated with HGS) was tested by comparison with reference cutoff values (appendicular SMM index, obtained by DXA) and clinical sarcopenia diagnoses. The prognostic value of the models for the prediction of sarcopenia and mortality at 104 wk of follow up was further tested using Kaplan-Meier graphics and Cox models.ResultsThe models with anthropometric variables, alone and combined with biochemical variables, showed good accuracy (0.89 [0.83; 0.94] and 0.90 [0.84; 0.95], respectively) and sensitivity (0.72 [0.56; 0.85] and 0.74 [0.59; 0.86], respectively) and excellent specificity (0.96 [0.90; 0.99] and 0.97 [0.92; 0.99], respectively) in predicting SMM. Both models showed excellent accuracy (0.94 [0.89; 0.98], good sensitivity (0.68 [0.45; 0.86]), and excellent specificity (1.00 [0.96; 1.00]) in predicting sarcopenia. The models predicted mortality in patients with sarcopenia, with the likelihood of death sixfold greater relative to patients not predicted to have sarcopenia.ConclusionsOur simple and inexpensive models provided a practical and safe approach to diagnosing sarcopenia patients with cirrhosis along with an estimate of their mortality risk when other reference methods are unavailable.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…