• J Clin Monit Comput · Jun 2013

    Heart rate variability analysis during central hypovolemia using wavelet transformation.

    • Soo-Yeon Ji, Ashwin Belle, Kevin R Ward, Kathy L Ryan, Caroline A Rickards, Victor A Convertino, and Kayvan Najarian.
    • Bowie State University, Bowie, Maryland, USA.
    • J Clin Monit Comput. 2013 Jun 1;27(3):289-302.

    AbstractDetection of hypovolemia prior to overt hemodynamic decompensation remains an elusive goal in the treatment of critically injured patients in both civilian and combat settings. Monitoring of heart rate variability has been advocated as a potential means to monitor the rapid changes in the physiological state of hemorrhaging patients, with the most popular methods involving calculation of the R-R interval signal's power spectral density (PSD) or use of fractal dimensions (FD). However, the latter method poses technical challenges, while the former is best suited to stationary signals rather than the non-stationary R-R interval. Both approaches are also limited by high inter- and intra-individual variability, a serious issue when applying these indices to the clinical setting. We propose an approach which applies the discrete wavelet transform (DWT) to the R-R interval signal to extract information at both 500 and 125 Hz sampling rates. The utility of machine learning models based on these features were tested in assessing electrocardiogram signals from volunteers subjected to lower body negative pressure induced central hypovolemia as a surrogate of hemorrhage. These machine learning models based on DWT features were compared against those based on the traditional PSD and FD, at both sampling rates and their performance was evaluated based on leave-one-subject-out fold cross-validation. Results demonstrate that the proposed DWT-based model outperforms individual PSD and FD methods as well as the combination of these two traditional methods at both sample rates of 500 Hz (p value <0.0001) and 125 Hz (p value <0.0001) in detecting the degree of hypovolemia. These findings indicate the potential of the proposed DWT approach in monitoring the physiological changes caused by hemorrhage. The speed and relatively low computational costs in deriving these features may make it particularly suited for implementation in portable devices for remote monitoring.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.