-
- Céline Charroud, Gaëtan Poulen, Emily Sanrey, Menjot de Champfleur Nicolas N Institut d'Imagerie Fonctionnelle Humaine, I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hosp, Jérémy Deverdun, Philippe Coubes, and Emmanuelle Le Bars.
- Unité de recherche sur les comportements et mouvements anormaux (URCMA, IGF, INSERM U661 UMR 5203), Department of Neurosurgery, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France. Electronic address: celine.charroud@hotmail.fr.
- Neuroscience. 2021 Mar 1; 457: 196-205.
AbstractIt is known that the nucleus accumbens, orbitofrontal cortex and insula play a role in food-related reward processes. Although their interconnectedness would be an ideal topic for understanding food intake mechanisms, it nevertheless remains unclear especially in adolescent. Therefore, this study aims to investigate the effect of hunger on functional connectivity in healthy adolescents using task- and rest-based imaging. Fifteen participants underwent two MRI sessions, pre-lunch (hunger) and post-lunch (satiety), including food cue task and resting-state. During task- and rest-based imaging, functional connectivity was greater when hungry as opposed to satiated between the right posterior insula/nucleus accumbens, suggesting involvement of salient interoceptive stimuli signals. During task-based imaging, an increase was observed in functional connectivity when hungry as opposed to satiated between the medial and lateral orbitofrontal cortex which contributes to the perception of food deprivation as a frustration. A decrease was identified when hungry as opposed to satiated in functional connectivity in the right anterior orbitofrontal/accumbens and posterior insula/medial orbitofrontal cortices reflecting suppression of the affective and sensorial information. Conversely, functional connectivity was increased during aversive stimuli between the right medial orbitofrontal cortex and right posterior insula when hungry as opposed to satiated. This suggests that the value of valence could occur in the shift in connectivity between these two regions. In addition, during rest-based imaging, a left-sided lateralization was reported (accumbens/lateral orbitofrontal and accumbens/posterior insula) when hungry as opposed to satiated which may represent changes in internal state due to focus on the benefit of an upcoming meal.Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.