• Journal of critical care · Apr 2021

    Including urinary output to define AKI enhances the performance of machine learning models to predict AKI at admission.

    • Emma Schwager, Stephanie Lanius, Erina Ghosh, Larry Eshelman, Kalyan S Pasupathy, Erin F Barreto, and Kianoush Kashani.
    • Philips Research North America, Cambridge, MA, USA.
    • J Crit Care. 2021 Apr 1; 62: 283-288.

    PurposeAcute kidney injury (AKI) is a prevalent and detrimental condition in intensive care unit patients. Most AKI predictive models only predict creatinine-triggered AKI (AKICr) and might underperform when predicting urine-output-triggered AKI (AKIUO). We aimed to describe how admission AKICr prediction models perform in all AKI patients.Materials And MethodsThree types of models were trained: 1) pAKIany, predicting AKI based on creatinine or urine output, 2) pAKIUO, predicting AKI based only on urine output, and 3) pAKICr, predicting AKI based only on creatinine. We compared model performance and predictive features.ResultsThe pAKIany models had the best overall performance (AUROC 0.673-0.716) and the most consistent performance across three patient cohorts grouped by type of AKI trigger (min AUROC of 0.636). The pAKICr models had fair performance in predicting AKICr (AUROCs 0.702-0.748) but poor performance predicting AKIUO (AUROCs 0.581-0.695). The predictive features for the pAKICr models and pAKIUO models were distinct, while top features for the pAKIany models were consistently a combination of those for the pAKICr and pAKIUO models.ConclusionIgnoring urine output in the outcome during model training resulted in models that are unlikely to predict AKIUO adequately and may miss a substantial proportion of patients in practice.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.