-
- Qiang Tu, Hu Chen, Huan-Wen Ding, Guang-Wen Yu, Qiu-Ju Miao, Jian-Jian Shen, Xian-Hua Huang, Yong Tang, Hong Xia, and Jian-Zhong Xu.
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Orthopaedics, General Hospital of Southern Theatre Command of PLA, Guangdong, China; Department of Orthopaedics, The First School of Clinical Medicine, Southern Medical University, Guangdong, China.
- World Neurosurg. 2021 May 1; 149: e969-e981.
ObjectiveThis study aimed to explore the clinical application of three-dimensional (3D) printing technology in the surgical treatment of congenital scoliosis caused by hemivertebrae.MethodsTwenty-four patients (11 in the 3D-printing group and 13 in the conventional group) with scoliosis secondary to a single hemivertebra were retrospectively reviewed. All patients underwent hemivertebrectomy and short-segment fixation. Virtual preoperative planning, operation simulation, and intraoperative application of 3D-printed patient-specific templates were performed in the 3D-printing group. Hemorrhage volume, operation time, transfusion, and complications were noted. Radiographic parameters were evaluated preoperatively, postoperatively, and at final follow-up.ResultsAll patients had different degrees of successfully corrected scoliosis. There was a similar correction of the Cobb angle postoperatively between the 2 groups. The operation time, blood loss, transfusion, time for the insertion of each screw, accuracy of screw placement, and complication rate in the 3D-printing group were significantly superior to those in the control group. No patient experienced major complications. No significant correction loss or instrument dysfunction was observed during follow-up.ConclusionsAs a viable and effective auxiliary technology, 3D printing makes it possible for surgery to meet both surgeon-specific and patient-specific requirements. 3D-printed individualized templates allow surgery for the correction of congenital scoliosis to enter a new stage of personalized precision surgery.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.