• Am. J. Respir. Crit. Care Med. · Jul 2021

    Detecting Deteriorating Patients in Hospital: Development and Validation of a Novel Scoring System.

    • PimentelMarco A FMAFInstitute of Biomedical Engineering, Department of Engineering Science, and., Oliver C Redfern, James Malycha, Paul Meredith, David Prytherch, Jim Briggs, J Duncan Young, David A Clifton, Lionel Tarassenko, and Peter J Watkinson.
    • Institute of Biomedical Engineering, Department of Engineering Science, and.
    • Am. J. Respir. Crit. Care Med. 2021 Jul 1; 204 (1): 445244-52.

    AbstractRationale: Late recognition of patient deterioration in hospital is associated with worse outcomes, including higher mortality. Despite the widespread introduction of early warning score (EWS) systems and electronic health records, deterioration still goes unrecognized. Objectives: To develop and externally validate a Hospital- wide Alerting via Electronic Noticeboard (HAVEN) system to identify hospitalized patients at risk of reversible deterioration. Methods: This was a retrospective cohort study of patients 16 years of age or above admitted to four UK hospitals. The primary outcome was cardiac arrest or unplanned admission to the ICU. We used patient data (vital signs, laboratory tests, comorbidities, and frailty) from one hospital to train a machine-learning model (gradient boosting trees). We internally and externally validated the model and compared its performance with existing scoring systems (including the National EWS, laboratory-based acute physiology score, and electronic cardiac arrest risk triage score). Measurements and Main Results: We developed the HAVEN model using 230,415 patient admissions to a single hospital. We validated HAVEN on 266,295 admissions to four hospitals. HAVEN showed substantially higher discrimination (c-statistic, 0.901 [95% confidence interval, 0.898-0.903]) for the primary outcome within 24 hours of each measurement than other published scoring systems (which range from 0.700 [0.696-0.704] to 0.863 [0.860-0.865]). With a precision of 10%, HAVEN was able to identify 42% of cardiac arrests or unplanned ICU admissions with a lead time of up to 48 hours in advance, compared with 22% by the next best system. Conclusions: The HAVEN machine-learning algorithm for early identification of in-hospital deterioration significantly outperforms other published scores such as the National EWS.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…