• Neuroscience · Mar 1999

    Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression.

    • A Kamal, G J Biessels, I J Urban, and W H Gispen.
    • Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, The Netherlands.
    • Neuroscience. 1999 Mar 1; 90 (3): 737-45.

    AbstractStreptozotocin-diabetic rats, an animal model for diabetes mellitus, show learning deficits and impaired long-term potentiation in the CA1-field of the hippocampus. The present study aimed to further characterize the effects of streptozotocin-diabetes on N-methyl-D-aspartate receptor-dependent long-term potentiation in the CA1-field, to extend these findings to N-methyl-D-aspartate receptor-dependent and independent long-term potentiation in other regions of the hippocampus and to examine effects on long-term depression. First, the effect of diabetes duration on long-term potentiation in the CA1-field was determined. A progressive deficit was observed after a diabetes duration of six to eight weeks, which reached a maximum after 12 weeks of diabetes and remained stable thereafter. Next, long-term potentiation was examined in the dentate gyrus and in the CA3-field after 12 weeks of diabetes. Both were found to be impaired compared to controls. Finally, long-term depression was examined in the CA1-field of the hippocampus after 12 weeks of diabetes and found to be enhanced in slices from diabetic rats compared to controls. Changes in synaptic plasticity were observed in hippocampal slices from streptozotocin-diabetic rats. Expression of N-methyl-D-aspartate receptor-dependent long-term potentiation was impaired in the CA1-field and dentate gyrus and expression of N-methyl-D-aspartate receptor-independent long-term potentiation was impaired in the CA3-field. In contrast, expression of long-term depression was facilitated in CA1. It is suggested that this combination of changes in plasticity may reflect alterations in intracellular signalling pathways.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.